Let $a,b,c$ are nonnegative real numbers such that $\frac1{a^3+1}+\frac1{b^3+1}+\frac1{c^3+1}+\frac1{d^3+1}=2$.
Prove the inequality $$\frac{1-a}{a^2-a+1}+\frac{1-b}{b^2-b+1}+\frac{1-c}{c^2-c+1}+\frac{1-d}{d^2-d+1}\ge0$$
My attempts:
Let $$A=\frac{1-a}{a^2-a+1}+\frac{1-b}{b^2-b+1}+\frac{1-c}{c^2-c+1}+\frac{1-d}{d^2-d+1}$$
If $a=1$ then $A=0$ then inequality is hold. If $a\not=1$ then
$$A=\frac{1-a^2}{a^3+1}+\frac{1-b^2}{b^3+1}+\frac{1-c^2}{c^3+1}+\frac{1-d^2}{d^3+1}$$
I tried the method of Lagrange multipliers and Jensen's inequality but I have not been proved this inequality
With the condition $\sum\limits_{cyc}\frac{1}{a^3+1}=2$ it's true: $$\sum_{cyc}\frac{1-a}{1-a+a^2}=\sum_{cyc}\left(\frac{1-a}{1-a+a^2}+\frac{4}{3}\left(\frac{1}{2}-\frac{1}{a^3+1}\right)\right)=\sum_{cyc}\frac{(a-1)^2(2a+1)}{3(a^3+1)}\geq0.$$