The real question I have been given is:
$(p \vee r), (\neg q \vee r)$
and I need to conclude
$ (p\to q) \to r $
$ (\neg p \to r) \vee (q \to r) \equiv (\neg p \vee q) \to r $
I have the left side of the equivalence but I cannot show right side with natural deduction. Please help?
Hint. Use the following two tautologies.
$$ \begin{align} \Big(\;\varphi\implies\psi\;\Big)&\iff\Big(\;\neg\varphi\;\vee\;\psi\;\Big) \\[5pt] \Big(\;\varphi\;\vee\;\psi\;\Big)&\iff\Big(\;\psi\;\vee\;\varphi\;\Big) \end{align} $$