Prove that $\lnot(p\lor(\lnot p\land q)$ is equivalent to $\lnot p\land\lnot q$
I always end up at $\lnot p$, here's my solution: \begin{equation} \lnot(p\lor(\lnot p\land q))=\lnot p\land\lnot q \end{equation} let $\lnot p\land q$ be $r$ \begin{gather} \lnot(p\lor r)=\lnot p\land\lnot q\\ \lnot p\land\lnot r=\lnot p\land\lnot q\\ \lnot p\land\lnot(\lnot p\land q)=\lnot p\land\lnot q\\ \lnot p\land(p\land\lnot q)=\lnot p\land\lnot q\\ \lnot p=\lnot p\land\lnot q \end{gather} not equal.
$\neg P \wedge \neg ( \neg P \wedge Q)$
= $\neg P \wedge (P \vee \neg Q) \qquad \text{(De Morgan's law)}$
= $(\neg P \wedge P) \vee (\neg P \wedge \neg Q) \qquad \text{(ditributivity)}$
= $\neg P \wedge \neg Q$
The conclusion is justified by the fact that $\neg P \wedge P$ is paradoxical, hence $(\neg P \wedge P) \vee (\neg P \wedge \neg Q)$ is true if and only if $\neg P \wedge \neg Q$ is.