I know this simple Bayes formula:
$$ P(A|B)=P(B|A)*P(A)/P(B) $$
While I was seeing a video in MCMC I came across another variant
P ( x | t ) = ∑ c P ( x | c , t ) P ( c | t ) ?How to interpret the above formula
I know this simple Bayes formula:
$$ P(A|B)=P(B|A)*P(A)/P(B) $$
While I was seeing a video in MCMC I came across another variant
P ( x | t ) = ∑ c P ( x | c , t ) P ( c | t ) ?How to interpret the above formula
Copyright © 2021 JogjaFile Inc.
$\mathsf P(x\mid t)$ is ussually a shorthand for $\mathsf P(X{=}x\mid T{=}t)$, where $X,T$ are discrete random variables and $x,t$ values within their support.
Let $C$ be some other random variable measured over the same sample space. Then the Law of Total Probability, and the definition for conditional probability, gives.
$$\mathsf P(X{=}x\mid T{=}t){~=~\sum_{c} \mathsf P(X{=}x,C{=}c\mid T{=}t) \\ ~=~ \sum_c \mathsf P(X{=}x\mid C{=}c, T{=}t)\,\mathsf P(C{=}c\mid T{=}t)}$$
Or, as per the shorthand, $\mathsf P(x\mid t){~=~\sum_c \mathsf P(x,c\mid t)\\~=~\sum_c \mathsf P(x\mid c, t)\,\mathsf P(c\mid t)}$
In a similar manner, if $A,B,C$ are events in the same trial, we have
$$\mathsf P(A\mid B) {~=~ \mathsf P(A,C\mid B)+\mathsf P(A,C^\complement\mid B) \\ ~=~\mathsf P(A\mid B,C)\,\mathsf P(C\mid B)+\mathsf P(A\mid B,C^\complement)\,\mathsf P(C^\complement\mid B) }$$