Assuming that given a mean $\mu$, the data are normally distributed with variance $10$ and assuming a uniformly distributed prior density on the interval $(90, 110)$, we are asked to show that the posterior density on (90, 110) looks something like: $$p(\mu|x) = \frac{1}{\sqrt{\pi}}\frac{1}{\Phi(\frac{110 - \bar{x}}{1/\sqrt{2}}) - \Phi(\frac{90 - \bar{x}}{1/\sqrt{2}})}\exp\left( - (\bar{x}- \mu)^2 \right)$$ I tried to calculate $p(x) = \int p(x|\mu)p(\mu)d\mu$, but so far my results look little promising. So far I have been trying to rexpress the exponent in $p(x)$ so I could integrate over a normal density of $\mu$, but this doesn't help much. Any input would be greatly appreciated. :)
2026-02-22 20:37:52.1771792672
Posterior: normal likelihood, uniform prior?
2.5k Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in PROBABILITY
- How to prove $\lim_{n \rightarrow\infty} e^{-n}\sum_{k=0}^{n}\frac{n^k}{k!} = \frac{1}{2}$?
- Is this a commonly known paradox?
- What's $P(A_1\cap A_2\cap A_3\cap A_4) $?
- Prove or disprove the following inequality
- Another application of the Central Limit Theorem
- Given is $2$ dimensional random variable $(X,Y)$ with table. Determine the correlation between $X$ and $Y$
- A random point $(a,b)$ is uniformly distributed in a unit square $K=[(u,v):0<u<1,0<v<1]$
- proving Kochen-Stone lemma...
- Solution Check. (Probability)
- Interpreting stationary distribution $P_{\infty}(X,V)$ of a random process
Related Questions in PROBABILITY-THEORY
- Is this a commonly known paradox?
- What's $P(A_1\cap A_2\cap A_3\cap A_4) $?
- Another application of the Central Limit Theorem
- proving Kochen-Stone lemma...
- Is there a contradiction in coin toss of expected / actual results?
- Sample each point with flipping coin, what is the average?
- Random variables coincide
- Reference request for a lemma on the expected value of Hermitian polynomials of Gaussian random variables.
- Determine the marginal distributions of $(T_1, T_2)$
- Convergence in distribution of a discretized random variable and generated sigma-algebras
Related Questions in STATISTICS
- Given is $2$ dimensional random variable $(X,Y)$ with table. Determine the correlation between $X$ and $Y$
- Statistics based on empirical distribution
- Given $U,V \sim R(0,1)$. Determine covariance between $X = UV$ and $V$
- Fisher information of sufficient statistic
- Solving Equation with Euler's Number
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- Determine the marginal distributions of $(T_1, T_2)$
- KL divergence between two multivariate Bernoulli distribution
- Given random variables $(T_1,T_2)$. Show that $T_1$ and $T_2$ are independent and exponentially distributed if..
- Probability of tossing marbles,covariance
Related Questions in BAYESIAN
- Obtain the conditional distributions from the full posterior distribution
- What it the posterior distribution $\mu| \sigma^2,x $
- Posterior: normal likelihood, uniform prior?
- If there are two siblings and you meet one of them and he is male, what is the probability that the other sibling is also male?
- Bayesian updating - likelihood
- Is my derivation for the maximum likelihood estimation for naive bayes correct?
- I don't understand where does the $\frac{k-1}{k}$ factor come from, in the probability mass function derived by Bayesian approach.
- How to interpret this bayesian inference formula
- How to prove inadmissibility of a decision rule?
- Dependence of posterior probability on parameters
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
The integral in the question is $$f_X(x)=\int f_{X|M}(x|\mu)f_M(\mu)d\mu=\frac{1}{20}\int_{90}^{110}\frac{1}{2\sqrt{\pi\cdot 10}}\exp\left(-\frac{(\mu-x)^2}{2\cdot 10}\right)d\mu$$
The integral in RHS is the probability that normal random variable $M\sim N(x, 10)$ takes value in $[90,110]$, and you can find the probability by 'standartizing' the normal, that is using $$Y=\frac{\mu-x}{\sqrt{10}} \sim N(0,1)$$
We are interested in $P(90<M<110)$ which is the same as $$P\left(\frac{90-x}{\sqrt{10}}<Y<\frac{110-x}{\sqrt{10}}\right)=\Phi\left(\frac{110-x}{\sqrt{10}}\right)-\Phi\left(\frac{90-x}{\sqrt{10}}\right)$$ and from here your final formula does not look correct to me.