If Laplacian L = D-A where D is the degree matrix and A is an 0-1 adjacency matrix for a directed graph. How can we prove that this Laplacian has an eigenvalue at 0?
2025-01-13 12:02:49.1736769769
How to prove that the Laplacian for a directed graph has an eigenvalue at 0?
1.6k Views Asked by m1cro1ce https://math.techqa.club/user/m1cro1ce/detail At
1
There are 1 best solutions below
Related Questions in GRAPH-THEORY
- Logic & Reasoning Question
- Category Theory compared with Meta-Grammars (or Hyper-Grammars) in Programming Languages
- Does this have a Euler circuit or a Euler path?
- cycle graph with $10$ v colouring with $11$
- Directed acyclic graph and adjacency matrix
- Why is there, for every language L in NP, a Turing machine with polynomial memory that also accepts L?
- How to prove vertex basis?
- Scheduling and coloring problem
- Chromatic polynomial of dual graphs
- Subdivision of nonplanar graph is nonplanar?
Related Questions in DIRECTED-GRAPHS
- How to prove that the Laplacian for a directed graph has an eigenvalue at 0?
- Does this theorem have a name, and where can I find a proof? "Every finite, weakly connected digraph contains at least one source or cycle."
- Proving there is a minimally strong digraph with $n$ vertices and $m$ arcs for all $n,m\in\mathbb{Z}$ such that $2\leq n\leq m\leq 2n−2$?
- About a strongly connected directed graph.
- draw the directed graph of the reflexive closure
- Tree of shortest paths in weighted acyclic graph
- Find maximum chain within a directed acyclic graph word problem.
- Pool/billiards tournament
- Prove that for any directed graph G = (V, E), the following inequality holds: d(A) + d(B) ≥ d(A ∩ B) + d(A ∪ B)
- Using graph theory to find the maximum compatible clique
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
Let $\textbf{1}$ be the function taking the value $1$ at each vertex. Then by explicit calculation, we see that both $D\textbf{1}$ and $A\textbf{1}$ are equal to the function taking the value $\deg(v)$ at each vertex $v$. Consequently, $$ (D-A)\textbf{1}=0, $$ which means that $\textbf{1}$ is an eigenvector of the Laplacian with eigenvalue $0$.