If $A$ and $B$ are unitarily equivalent, then $\sum_{i,j}|A_{ij}|^2 = \sum_{i,j}|B_{ij}|^2$
We have a unitary matrix $U$ such that $U^*AU = B$
How can I proceed from here to show $\sum_{i,j}|A_{ij}|^2 = \sum_{i,j}|B_{ij}|^2$?
Is this correct?
$BB^*=U^*AUU^*A^*U=U^*AA^*U$
so $\text{tr}(BB^*)=\text{tr}(AA^*)$
hence
$\text{tr}(AA^*)=\sum_{i,j}|A_{ij}|^2 = \sum_{i,j}|B_{ij}|^2 =\text{tr}(BB^*)$