Since $f: \mathbb{R}^m \to \mathbb{R}^n$ we can represent $A$ as the matrix of the linear transformation $f$, and may express the norm as $\|\ A \|\ $. Then, of course for the identity matrix, $I$, we have $\|\ I \|\ = 1$. And $AA^{-1} = I$ when $A$ has an inverse, so is it safe to say that $\|\ f \|\ \|\ f^{-1} \|\ = 1$ for every linear transformation $f$ where $f$ has an inverse. If not, what would we be a counter-example?
2026-02-22 18:17:19.1771784239
If $\|\ f \|\ = \max_{|x|=1} |f(x)|$ then is $\|\ f \|\ \|\ f^{-1}\|\ = 1$ for all $f\in \mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)$?
47 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in LINEAR-ALGEBRA
- An underdetermined system derived for rotated coordinate system
- How to prove the following equality with matrix norm?
- Alternate basis for a subspace of $\mathcal P_3(\mathbb R)$?
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Summation in subsets
- $C=AB-BA$. If $CA=AC$, then $C$ is not invertible.
- Basis of span in $R^4$
- Prove if A is regular skew symmetric, I+A is regular (with obstacles)
Related Questions in FUNCTIONAL-ANALYSIS
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- Prove or disprove the following inequality
- Unbounded linear operator, projection from graph not open
- $\| (I-T)^{-1}|_{\ker(I-T)^\perp} \| \geq 1$ for all compact operator $T$ in an infinite dimensional Hilbert space
- Elementary question on continuity and locally square integrability of a function
- Bijection between $\Delta(A)$ and $\mathrm{Max}(A)$
- Exercise 1.105 of Megginson's "An Introduction to Banach Space Theory"
- Reference request for a lemma on the expected value of Hermitian polynomials of Gaussian random variables.
- If $A$ generates the $C_0$-semigroup $\{T_t;t\ge0\}$, then $Au=f \Rightarrow u=-\int_0^\infty T_t f dt$?
Related Questions in MULTIVARIABLE-CALCULUS
- Equality of Mixed Partial Derivatives - Simple proof is Confusing
- $\iint_{S} F.\eta dA$ where $F = [3x^2 , y^2 , 0]$ and $S : r(u,v) = [u,v,2u+3v]$
- Proving the differentiability of the following function of two variables
- optimization with strict inequality of variables
- How to find the unit tangent vector of a curve in R^3
- Prove all tangent plane to the cone $x^2+y^2=z^2$ goes through the origin
- Find the directional derivative in the point $p$ in the direction $\vec{pp'}$
- Check if $\phi$ is convex
- Define in which points function is continuous
- Gradient and Hessian of quadratic form
Related Questions in LINEAR-TRANSFORMATIONS
- Unbounded linear operator, projection from graph not open
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- A different way to define homomorphism.
- Linear algebra: what is the purpose of passive transformation matrix?
- Find matrix representation based on two vector transformations
- Is $A$ satisfying ${A^2} = - I$ similar to $\left[ {\begin{smallmatrix} 0&I \\ { - I}&0 \end{smallmatrix}} \right]$?
- Let $T:V\to W$ on finite dimensional vector spaces, is it possible to use the determinant to determine that $T$ is invertible.
- Basis-free proof of the fact that traceless linear maps are sums of commutators
- Assuming that A is the matrix of a linear operator F in S find the matrix B of F in R
- For what $k$ is $g_k\circ f_k$ invertible?
Related Questions in EXAMPLES-COUNTEREXAMPLES
- A congruence with the Euler's totient function and sum of divisors function
- Inner Product Uniqueness
- Metric on a linear space is induced by norm if and only if the metric is homogeneous and translation invariant
- Why do I need boundedness for a a closed subset of $\mathbb{R}$ to have a maximum?
- A congruence with the Euler's totient function and number of divisors function
- Analysis Counterexamples
- A congruence involving Mersenne numbers
- If $\|\ f \|\ = \max_{|x|=1} |f(x)|$ then is $\|\ f \|\ \|\ f^{-1}\|\ = 1$ for all $f\in \mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)$?
- Unbounded Feasible Region
- What would be the function to make a formula false?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Take $f\colon\mathbb{R}^2\longrightarrow\mathbb{R}^2$ defined by $f(x,y)=(x,2y)$. Then $f^{-1}(x,y)=\left(x,\frac y2\right)$, $\|f\|=2$, and $\|f^{-1}\|=1$.