I know that "Unbounded feasible regions may or may not have an optimal solution." I know the example where unbounded feasible region has an optimal solution but I need two examples where a maximum and in another a minimum don't exist.
2026-02-22 18:10:18.1771783818
Unbounded Feasible Region
1.5k Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in EXAMPLES-COUNTEREXAMPLES
- A congruence with the Euler's totient function and sum of divisors function
- Seeking an example of Schwartz function $f$ such that $ \int_{\bf R}\left|\frac{f(x-y)}{y}\right|\ dy=\infty$
- Inner Product Uniqueness
- Metric on a linear space is induced by norm if and only if the metric is homogeneous and translation invariant
- Why do I need boundedness for a a closed subset of $\mathbb{R}$ to have a maximum?
- Analysis Counterexamples
- A congruence involving Mersenne numbers
- If $\|\ f \|\ = \max_{|x|=1} |f(x)|$ then is $\|\ f \|\ \|\ f^{-1}\|\ = 1$ for all $f\in \mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)$?
- Unbounded Feasible Region
- What would be the function to make a formula false?
Related Questions in LINEAR-PROGRAMMING
- Linear algebra: what is the purpose of passive transformation matrix?
- Building the model for a Linear Programming Problem
- Show that $ \ x_ 0 \ $ cannot be an optimal solution
- Is there any way to model this situation in integer programming?
- How to Solve a Linear Programming Problem in $n$ Dimension Space?
- How to solve a linear program without any given data?
- Constraints for continuous path within graph with at least one obligatory node in path
- Select the smallest strict positive value from a list of variables in a linear program.
- How to add nonnegative constraint to an LP problem
- How to solve this optimization problem with absolute values in the objective function?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
As $x$ get larger, it is possible to choose some $y$ so that \begin{cases} \dfrac32 x &\le y \le \dfrac{3x + 8}{2} \\ y &\ge \dfrac{2x + 10}{7} \\ x,y &\ge 0 \\ z &= 4x - 3y \le 4x - 3\left( \dfrac32 x \right) = -\dfrac12 x \end{cases} Hence this LPP is unbounded and it has no minimum.