Let $q$ be an element of $\mathbb{Q}$ (rational numbers). How can I prove that $\sin (2\pi q)$ is algebraic over $\mathbb{Q}$ for any $q$? I am trying the method: Euler formula: $e^{i\theta} =\cos \theta+i\sin \theta$ so $2\sin\theta = ie^{i\theta}-ie^{-i\theta}$. $i$ is root of $x^2+1$. So if I prove that $e^{i\theta}$ and $e^{-i\theta}$ is algebraic over $\mathbb{Q}$f or $\theta=2\pi q$, it will be ok.
2026-02-22 21:47:18.1771796838
$\sin(2\pi q)$ is algebraic over $\mathbb{Q}$
266 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in TRIGONOMETRY
- Is there a trigonometric identity that implies the Riemann Hypothesis?
- Finding the value of cot 142.5°
- Using trigonometric identities to simply the following expression $\tan\frac{\pi}{5} + 2\tan\frac{2\pi}{5}+ 4\cot\frac{4\pi}{5}=\cot\frac{\pi}{5}$
- Derive the conditions $xy<1$ for $\tan^{-1}x+\tan^{-1}y=\tan^{-1}\frac{x+y}{1-xy}$ and $xy>-1$ for $\tan^{-1}x-\tan^{-1}y=\tan^{-1}\frac{x-y}{1+xy}$
- Sine of the sum of two solutions of $a\cos\theta + b \sin\theta = c$
- Tan of difference of two angles given as sum of sines and cosines
- Limit of $\sqrt x \sin(1/x)$ where $x$ approaches positive infinity
- $\int \ x\sqrt{1-x^2}\,dx$, by the substitution $x= \cos t$
- Why are extraneous solutions created here?
- I cannot solve this simple looking trigonometric question
Related Questions in EXPONENTIAL-FUNCTION
- How to solve the exponential equation $e^{a+bx}+e^{c+dx}=1$?
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- How do you calculate the horizontal asymptote for a declining exponential?
- Intersection points of $2^x$ and $x^2$
- Integrate exponential over shifted square root
- Unusual Logarithm Problem
- $f'(x)=af(x) \Rightarrow f(x)=e^{ax} f(0)$
- How long will it take the average person to finish a test with $X$ questions.
- The equation $e^{x^3-x} - 2 = 0$ has solutions...
- Solve for the value of k for $(1+\frac{e^k}{e^k+1})^n$
Related Questions in ALGEBRAIC-NUMBERS
- Extension of field, $\Bbb{R}(i \pi) = \Bbb{C} $
- Polynomial root of algebraic number
- If $\mathcal{O}_{\Bbb{Q}(\sqrt{d})}$ has class number $2$ or higher, does that mean $\sqrt{d}$ is irreducible but not prime?
- Is $5^{1/5} - 3\cdot i$ algebraic?
- Super Algebraic Numbers?
- The maximal real algebraic field
- One of the conjugates of an algebraic integer must have absolute value $\geq$ 1
- To find the minimal polynomial and to show that (1-i) is an associate of (1+i) in given set
- proof verification $\frac{3+2\sqrt{6}}{1-\sqrt{6}}$ is an algebraic integer
- $\sin(2\pi q)$ is algebraic over $\mathbb{Q}$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
If $q=\frac mn$, with $m,n\in\mathbb Z$ and $n>0$, then$$e^{2\pi iq}=e^{2\pi i\frac mn},$$which is algebraic, since it is a root of $x^n-1$.