The Birkhoff–von Neumann theorem states that every $n \times n$ doubly stochastic matrix is a convex combination of permutation matrices. Is this true for $\mathbb{N} \times \mathbb{N}$ matrices as well? If so, can you provide a reference?
2026-02-22 20:39:55.1771792795
Is the Birkhoff–von Neumann theorem true for infinite matrices?
371 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in LINEAR-ALGEBRA
- An underdetermined system derived for rotated coordinate system
- How to prove the following equality with matrix norm?
- Alternate basis for a subspace of $\mathcal P_3(\mathbb R)$?
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Summation in subsets
- $C=AB-BA$. If $CA=AC$, then $C$ is not invertible.
- Basis of span in $R^4$
- Prove if A is regular skew symmetric, I+A is regular (with obstacles)
Related Questions in DISCRETE-MATHEMATICS
- What is (mathematically) minimal computer architecture to run any software
- What's $P(A_1\cap A_2\cap A_3\cap A_4) $?
- The function $f(x)=$ ${b^mx^m}\over(1-bx)^{m+1}$ is a generating function of the sequence $\{a_n\}$. Find the coefficient of $x^n$
- Given is $2$ dimensional random variable $(X,Y)$ with table. Determine the correlation between $X$ and $Y$
- Given a function, prove that it's injective
- Surjective function proof
- How to find image of a function
- Find the truth value of... empty set?
- Solving discrete recursion equations with min in the equation
- Determine the marginal distributions of $(T_1, T_2)$
Related Questions in REFERENCE-REQUEST
- Best book to study Lie group theory
- Alternative definition for characteristic foliation of a surface
- Transition from theory of PDEs to applied analysis and industrial problems and models with PDEs
- Random variables in integrals, how to analyze?
- Abstract Algebra Preparation
- Definition of matrix valued smooth function
- CLT for Martingales
- Almost locality of cubic spline interpolation
- Identify sequences from OEIS or the literature, or find examples of odd integers $n\geq 1$ satisfying these equations related to odd perfect numbers
- property of Lebesgue measure involving small intervals
Related Questions in INFINITE-MATRICES
- Inverse of an Infinite Matrix (with factorials)
- Matrix exponential, containing a thermal state
- Spectrum of an infinite matrix
- Infinite matrix which cannot be represented by bounded linear operator
- Distance from a vector to a linear span vectors in a separable Hilbert space.
- Derive prime-identifying functions from inverse Vandermonde and Bernoulli numbers
- Is the Birkhoff–von Neumann theorem true for infinite matrices?
- Inverse of an infinite matrix with factorial entries
- Cutting off an infinite matrix(Making a finite matrix from an infinite matrix)
- Find the Inverse of an Infinite Square Matrix
Related Questions in STOCHASTIC-MATRICES
- Stochastic matrix question
- Limiting state vector of a $3$-state Markov chain
- Proving or disproving product of two stochastic matrices is stochastic
- Proving product of two column stochastic matrices is column stochastic (Proof verification)
- Decompose stochastic matrix in product of two stochastic matrices
- Examples of stochastic matrices that are also unitary?
- Cesàro limit of a stochastic matrix
- Maximum column sum of stochastic matrix
- Prove that : There exists a vector $x$ such that $Mx = x$ , where $M$ is a Markov matrix
- Ordering in $\mathbb{R}^n$ and its representation in terms of stochastic matrix
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
I don't know the exact answer to your question but I found a reference that should be useful. In L. Mirsky's book Transversal Theory (Academic Press, 1971, ISBN 0-12-498550-5), on p.213,
I read:
The reference Mirsky (1) is to the following paper: