Let $(X,d)$ be a metric space. How to prove that every lindelöf metric space is separable?
2026-02-22 23:27:01.1771802821
Lindelöf and separable metric space
1.3k Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GENERAL-TOPOLOGY
- Is every non-locally compact metric space totally disconnected?
- Let X be a topological space and let A be a subset of X
- Continuity, preimage of an open set of $\mathbb R^2$
- Question on minimizing the infimum distance of a point from a non compact set
- Is hedgehog of countable spininess separable space?
- Nonclosed set in $ \mathbb{R}^2 $
- I cannot understand that $\mathfrak{O} := \{\{\}, \{1\}, \{1, 2\}, \{3\}, \{1, 3\}, \{1, 2, 3\}\}$ is a topology on the set $\{1, 2, 3\}$.
- If for every continuous function $\phi$, the function $\phi \circ f$ is continuous, then $f$ is continuous.
- Defining a homotopy on an annulus
- Triangle inequality for metric space where the metric is angles between vectors
Related Questions in METRIC-SPACES
- Show that $d:\mathbb{C}\times\mathbb{C}\rightarrow[0,\infty[$ is a metric on $\mathbb{C}$.
- Question on minimizing the infimum distance of a point from a non compact set
- Is hedgehog of countable spininess separable space?
- Lemma 1.8.2 - Convex Bodies: The Brunn-Minkowski Theory
- Closure and Subsets of Normed Vector Spaces
- Is the following set open/closed/compact in the metric space?
- Triangle inequality for metric space where the metric is angles between vectors
- continuous surjective function from $n$-sphere to unit interval
- Show that $f$ with $f(\overline{x})=0$ is continuous for every $\overline{x}\in[0,1]$.
- Help in understanding proof of Heine-Borel Theorem from Simmons
Related Questions in SEPARATION-AXIOMS
- A finite topological space is T1 if and only the topology is discrete
- normal doesn't imply paracompact
- Find the intersection of all $T_2$ topologies on an infinite set $X$
- Why isn't $T_1$ space also Hausforff?
- Quotient space and quotient set for $\mathrm{End}(\mathbb{R}^2)$
- Question about the proof of $T_3+$ countable basis $= T_4$
- Show that a non-trivial connected Tychonoff space is uncountable
- A homeomorphism on a dense set in Hausdorff space
- Unclear definition of open sets in proof of Regular Lindelof space is normal
- $X,Y$ are normal, $A \subset X$ closed, $f:A \rightarrow Y$ continuous. Show that $X \cup_f Y$ is normal.
Related Questions in SEPARABLE-SPACES
- Is $L^p(\Omega)$ separable over Lebesgue measure.
- Is trivial topology seperable?
- How to conclude that $\ell_\infty$ is not separable from this exercise?
- Separability of differentiable functions
- Unit ball in dual space is weak*separable
- Is $\ell^1(\mathbb{N})^*$ separable? If so, why?
- Is $\mathbb{R}\setminus\mathbb{Q}$ separable?
- Can we characterise $X$ being separable in terms of $C(X, \mathbb R)$?
- Let $(V, \Vert.\Vert)$ be a normed vectorspace. Then $V$ is separable iff $V$ has a total countable subset
- Separability and completeness of Cartesian product of two metric spaces
Related Questions in LINDELOF-SPACES
- Proof by Contradiction--Product of Lindelöf Spaces is Lindelöf
- Show that if a topological space has at most countable basis, then the space is separable and Lindelöf
- Let $(X, \mathcal{T})$ be a metrizable space. Prove that $X$ Lindelöf implies that $X$ is separable.
- Show that a Regular space $X$ is Lindelöf if it has a locally finite open cover $\mathcal{U}$ such that $\rm{Fr}\,U$ has the Lindelöf property
- Proof for $\mathbb{R}_{l}$ is Lindelof
- Lindelöf and separable metric space
- Countable $\varepsilon$-net of measurable sets
- Munkres 37.3 maximal set with respect to the countable intersection property.
- Almost Lindelöf spaces.
- How to show $R_l$ is Lindelöf space?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Hint: for each $n \in \mathbb{N}$, the cover $A_n := \{B_{\frac{1}{n}}(x) : x \in X\}$ of $X$ has a countable subcover, $$ \mathcal{B}_n = \{B_{\frac{1}{n}}(x^{(n)}_j)\}_{j \geq 1} \subseteq A_n. $$
In particular, each point of $x$ is in some ball of $B_n$. That is, each point of $x$ is at distance less than $\frac{1}{n}$ from some $x_j^{(n)}$. What does this tell you about $\bigcup_{n \in \mathbb{N}} \{x^{(n)}_j\}_{j \geq 1}$?