How to get a minimal polynomial for an algebraic number: $E_p=\cos\frac{2\pi}{p} + i\sin\frac{2\pi}{p}$?
$x=\cos\frac{2\pi}{p} + i\sin\frac{2\pi}{p}$ /$^{p}$
$x^{p}=\cos2\pi + i\sin2\pi$
$x^{p}=1$
$x^{p}-1=0$
$(x-1)(x^{p-1} + x^{p-2} + x^{p-3} +\cdots+ 1)=0$
$(x-1)\dfrac{1-x^p}{1-x}=0$
I don't know what to do now. I have to get irreducible polynomial.