Let $G$ be a digraph and $c:E(G)\rightarrow R$. We look for a set $X\subset V(G)$ with $s\in X$ and $t\notin X$ such that $\sum\limits_{e\in \delta^+(X)}c(e)-\sum\limits_{e\in \delta^-(X)}c(e)$ is minimum. Here, $c$ can be any real number(not only positive value). Can we transform this problem into the well-known Minimum Capacity cut problem?
2026-02-22 21:15:54.1771794954
Bumbble Comm
On
Minimum cut on a directed graph with negative term
885 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
2
There are 2 best solutions below
0
Bumbble Comm
On
Your question is a special case of this question which mentions a solution for the special case.
Related Questions in GRAPH-THEORY
- characterisation of $2$-connected graphs with no even cycles
- Explanation for the static degree sort algorithm of Deo et al.
- A certain partition of 28
- decomposing a graph in connected components
- Is it true that if a graph is bipartite iff it is class 1 (edge-coloring)?
- Fake induction, can't find flaw, every graph with zero edges is connected
- Triangle-free graph where every pair of nonadjacent vertices has exactly two common neighbors
- Inequality on degrees implies perfect matching
- Proving that no two teams in a tournament win same number of games
- Proving that we can divide a graph to two graphs which induced subgraph is connected on vertices of each one
Related Questions in OPTIMIZATION
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- optimization with strict inequality of variables
- Gradient of Cost Function To Find Matrix Factorization
- Calculation of distance of a point from a curve
- Find all local maxima and minima of $x^2+y^2$ subject to the constraint $x^2+2y=6$. Does $x^2+y^2$ have a global max/min on the same constraint?
- What does it mean to dualize a constraint in the context of Lagrangian relaxation?
- Modified conjugate gradient method to minimise quadratic functional restricted to positive solutions
- Building the model for a Linear Programming Problem
- Maximize the function
- Transform LMI problem into different SDP form
Related Questions in DISCRETE-OPTIMIZATION
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- Simultaneously multiple copies of each of a set of substrings of a string.
- Do these special substring sets form a matroid?
- What does it mean to dualize a constraint in the context of Lagrangian relaxation?
- How to solve this binary optimization problem?
- What exactly the Ellipsoid method does?
- Give the cutting-plane proof of $\sum\limits_{i,j = 1}^4 x_{ij} \leq 9$.
- Relation with the perfect partition problem and the single machine task schedule problem
- What is the name of following optimization problem and algorithms to solve them
- Integrality gap of maximum weighted clique
Related Questions in COMBINATORIAL-PROOFS
- Proof of (complicated?) summation equality
- Prove combination arguments $c(c(n,2),2) = 3c(n,3)+3c(n,4)$
- A Combinatorial Geometry Problem With A Solution Using Extremal Principle
- What is the least position a club in EPL can finish with 30 wins?
- Find a combinatorial proof for $\binom{n+1}{k} = \binom{n}{k} + \binom{n-1}{k-1} + ... + \binom{n-k}{0}$
- Use combinatorial arguments to prove the following binomial identities
- money changing problem
- $\forall n\in\mathbb N,x>-1,(1+x)^n\ge1+nx$ Using 2nd Derivative
- Combinatorial proof of $\sum\limits_{i=0}^{r} ({m \choose i}) = {{m + r}\choose m}$
- Intersection of $n$ circles and $m$ lines
Related Questions in NETWORK-FLOW
- Flow graph force flow to "move" together
- min cost flow in offline bipartite graph problem
- Looking for some information on applications of integer linear programming
- Linear Programming Primal-Dual tough question
- Flows: Graph Theory/Groups, Empty Set
- Max number of vertex disjoint S-T paths in time O(VE)
- Minimum cut on a directed graph with negative term
- Minimum capacity cut reduction from digraph with two edge weight sets
- Dual Of Integer Network Formulation
- Deriving the dual of the minimum cost flow problem.
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
If an edge weight is negative, simply reverse the edges direction and make the weight positive. Do this to make all the edge weights positive so that you have the standard min cut problem.