The series $\sum_{n=1}^\infty \frac{\cos \ n}{n}$ convergences. Mathematica gives as limit $$\sum_{n=1}^\infty \frac{\cos \ n}{n}=-\frac{\ln\left(2-2 \cos(1)\right)}{2} $$ What are the proofs of this limit?
2026-02-22 22:22:31.1771798951
Proof of $\sum_{n=1}^\infty \frac{\cos \ n}{n}=-\frac{\ln\left(2-2 \cos(1)\right)}{2} $
86 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in REAL-ANALYSIS
- how is my proof on equinumerous sets
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Is this relating to continuous functions conjecture correct?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Absolutely continuous functions are dense in $L^1$
- A particular exercise on convergence of recursive sequence
Related Questions in SEQUENCES-AND-SERIES
- How to show that $k < m_1+2$?
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Negative Countdown
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Show that the sequence is bounded below 3
- A particular exercise on convergence of recursive sequence
- Proving whether function-series $f_n(x) = \frac{(-1)^nx}n$
- Powers of a simple matrix and Catalan numbers
- Convergence of a rational sequence to a irrational limit
- studying the convergence of a series:
Related Questions in TRIGONOMETRY
- Is there a trigonometric identity that implies the Riemann Hypothesis?
- Finding the value of cot 142.5°
- Using trigonometric identities to simply the following expression $\tan\frac{\pi}{5} + 2\tan\frac{2\pi}{5}+ 4\cot\frac{4\pi}{5}=\cot\frac{\pi}{5}$
- Derive the conditions $xy<1$ for $\tan^{-1}x+\tan^{-1}y=\tan^{-1}\frac{x+y}{1-xy}$ and $xy>-1$ for $\tan^{-1}x-\tan^{-1}y=\tan^{-1}\frac{x-y}{1+xy}$
- Sine of the sum of two solutions of $a\cos\theta + b \sin\theta = c$
- Tan of difference of two angles given as sum of sines and cosines
- Limit of $\sqrt x \sin(1/x)$ where $x$ approaches positive infinity
- $\int \ x\sqrt{1-x^2}\,dx$, by the substitution $x= \cos t$
- Why are extraneous solutions created here?
- I cannot solve this simple looking trigonometric question
Related Questions in TRIGONOMETRIC-SERIES
- Can you please tell me if such an identity exists
- Finding value of $\sin(2^\circ)\cdot \sin(4^\circ)\cdot\cdot \cdot \sin(88^\circ)$
- The asymptotic behaviour of a sequence involving the sine and cosine functions: explain an strategy to get it
- Sum of the series $\csc^{-1} \sqrt{10}+ \csc^{-1} \sqrt{50}+\csc^{-1}\sqrt{170}...$
- partial sum of the series involving trigonometric function
- What is the advantage of using maclaurin expansion of functions like tan(x) over using the functions themselves?
- Prove the sum equation
- A conjecture about the asymptotic of the absolute value of $\sum_{k=1}^n\sin\left(N_k\right)$, where $N_k$ is the primorial of order $k$
- Sum of a trigonometric series involving sin and tan
- A very challenging question integral of an infinite product.
Related Questions in FRESNEL-INTEGRALS
- Proving that $\int_{0}^{+\infty}e^{ix^n}\text{d}x=\Gamma\left(1+\frac{1}{n}\right)e^{i\pi/2n}$
- How does Raph Levien's Spiro choose angles for the ends of a path?
- Numerical solution of generalized Fresnel integral
- Show that $\int_0^n\sin x^2dx$ converges
- Generalized Fresnel Integral using Laplace
- Derivative of Fresnel integral function with functional limits
- How to show that $\int_0^1 \sin \pi t ~ \left( \zeta (\frac12, \frac{t}{2})-\zeta (\frac12, \frac{t+1}{2}) \right) dt=1$?
- Problem proving the Fresnel integral
- Laplace transforms with Fresnel(?) integrals
- Asymptotic behavior of Fresnel-like integral of an exponential
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Since $\sum_{n \ge 1} \frac{z^n}{n}=-\log{(1-z)}, |z| < 1$, and the LHS converges for all $|z|=1, z \ne 1$, it follows by basic Abelian theory that the sum is $-\log(1-z)$ there too.
In particular if $z=e^{i}$ we get $\sum_{n \ge 1} \frac{\cos n + i \sin n}{n}=-\log(1-e^{i})$. Taking real parts and noting that $|1-e^i|^2=2-2 \cos 1$ we are done!
(Edit later: if one is not familiar with Tauberian theory and what are called Abelian vs Tauberian results in that context, the fundamental easy result due to Abel is that if $\sum a_nz^n=f(z), |z| <1$ and for some $|z_0|=1, \sum a_nz_0^n$ converges to a finite limit, then $f(z) \to \sum a_nz_0^n$ when $z \to z_0$ radially say. The converse is not true (if $f$ converges at $z_0$, the series definitely does not need to converge there as we can easily see with the geometric series) and the study of the conditions under which it holds is called Tauberian theory