Positive real numbers $x$,$y$ satisfy $x+y=1$. For any integer $n \geqslant 2$, show that $$\frac{x^{n}}{x+y^3}+\frac{y^{n}}{y+x^3} \geqslant \frac{2^{4-n}}{5}.$$
So far, I've tried some elementary ways, such as AM-GM, Holder, induction. Maybe certain method mentioned above is feasible, but I've made little progress, please help.
The hint:
For all $n\geq3$ prove that $f(x)=\frac{x^n}{x+(1-x)^3}$ is a convex function and use Jensen.
Consider the case $n=2$.
Indeed, for $n=2$ we need to prove that $$\frac{x^2}{x+(1-x)^3}+\frac{(1-x)^2}{1-x+x^3}\geq\frac{4}{5}$$ or $$(2x-1)^2(x^4-2x^3+5x^2-4x+1)\geq0,$$ which is obvious.
Let $n\geq3$ and $f(x)=\frac{x^n}{x+(1-x)^2}.$
Thus, $$f''(x)=\tfrac{x^{n-2}((x+(1-x)^3)^2n^2-(x+(1-x)^3)(1-6x+15x^2-7x^3)n+2x^2(6x^4-24x^3+33x^2-15x+1))}{(x+(1-x)^3)^3}.$$ For $n=3$ we have $f''(x)>0$ because in this case by AM-GM: $$(x+(1-x)^3)^2n^2-(x+(1-x)^3)(1-6x+15x^2-7x^3)n+$$ $$+2x^2(6x^4-24x^3+33x^2-15x+1)=$$ $$=9(x+(1-x)^3)^2-3(x+(1-x)^3)(1-6x+15x^2-7x^3)+$$ $$+2x^2(6x^4-24x^3+33x^2-15x+1)=$$ $$=2(3x^5-6x^4+6x^3+x^2-6x+3)\geq2(3x^3+x^2+1+1+1-6x)\geq$$ $$\geq2\left(5\sqrt[5]{3x^3\cdot x^2\cdot1^3}-6x\right)=2x\left(5\sqrt[5]3-6\right)>0.$$ Now, $$3(x+(1-x)^3)-(1-6x+15x^2-7x^3)=2(x-1)^2(2x+1)>0.$$ Thus, for all $n\geq4$ we obtain: $$(x+(1-x)^3)^2n^2-(x+(1-x)^3)(1-6x+15x^2-7x^3)n+$$ $$+2x^2(6x^4-24x^3+33x^2-15x+1)=$$ $$=n(x+(1-x)^3)(3(x+(1-x)^3)-(1-6x+15x^2-7x^3))+(n^2-3n)(x+(1-x)^3)^2+$$ $$+2x^2(6x^4-24x^3+33x^2-15x+1)\geq$$ $$\geq(n^2-3n)(x+(1-x)^3)^2+2x^2(6x^4-24x^3+33x^2-15x+1)\geq$$ $$\geq4(x+(1-x)^3)^2+2x^2(6x^4-24x^3+33x^2-15x+1)=$$ $$=2(8x^6-36x^5+59x^4-43x^3+21x^2-8x+2)\geq$$ $$\geq2(8x^6-36x^5+59x^4-43x^3+13x^2)=2x^2(8x^4-36x^3+59x^2-43x+13)=$$ $$=2x^2\left(2\left(2x^2-\frac{9}{2}x+2\right)^2+\frac{1}{2}(5x^2-14x+10)\right)>0.$$