I'm a little confused right but I think this question can easily be answered.
Let $X\subset \mathbb C^3$ be the (affine) surface defined by $z=x^ay^b$, where $(x,y,z)$ are the coordinates on $\mathbb C^3$ and in this surface the divisor $D=\{z=0\}=a\cdot\{x=0\}+b\cdot\{y=0\}$ Consider the map $\phi: \mathbb C^3 \to \mathbb C^3, (x,y,z)\mapsto (x,y,z^p)$. What is $\phi^*D$?
I think it should be either $pD$ or $\frac{1}{p}D$ according to the following: the pullback of the equation $z=x^ay^b$ is $z^p=x^ay^b$. Now, either it is $pD$ because we have the $p$th power of $z$ or $\frac{1}{p}D$ because we can rewrite this as $z=x^{\frac{a}{p}}y^{\frac{b}{p}}$. Which argument (if one) is correct and why?
2026-02-22 23:28:12.1771802892
Pullback of divisor under the map $z\mapsto z^p$
96 Views Asked by user526015 https://math.techqa.club/user/user526015/detail At
1
There are 1 best solutions below
Related Questions in ALGEBRAIC-GEOMETRY
- How to see line bundle on $\mathbb P^1$ intuitively?
- Jacobson radical = nilradical iff every open set of $\text{Spec}A$ contains a closed point.
- Is $ X \to \mathrm{CH}^i (X) $ covariant or contravariant?
- An irreducible $k$-scheme of finite type is "geometrically equidimensional".
- Global section of line bundle of degree 0
- Is there a variant of the implicit function theorem covering a branch of a curve around a singular point?
- Singular points of a curve
- Find Canonical equation of a Hyperbola
- Picard group of a fibration
- Finding a quartic with some prescribed multiplicities
Related Questions in COMPLEX-GEOMETRY
- Numerable basis of holomporphic functions on a Torus
- Relation between Fubini-Study metric and curvature
- Hausdorff Distance Between Projective Varieties
- What can the disk conformally cover?
- Some questions on the tangent bundle of manifolds
- Inequivalent holomorphic atlases
- Reason for Graphing Complex Numbers
- Why is the quintic in $\mathbb{CP}^4$ simply connected?
- Kaehler Potential Convexity
- I want the pullback of a non-closed 1-form to be closed. Is that possible?
Related Questions in DIVISORS-ALGEBRAIC-GEOMETRY
- Degree of divisors on curves
- Divisors and Picard Group
- Connexion between the number of poles of a function and the degree of the associated projection map
- Principal divisors of smooth projective varieties
- Global section $s$ of ample line bundle such that $X_s$ is everywhere dense
- Poincare-Euler characteristic and sum of two divisors
- Fulton's exercise $8.10$: divisors in an elliptic curve
- Correspondance between function fields and projective curves
- Why is the torsion subgroup of the Neron Severi group a birational invariant?
- Curves on algebraic surfaces satistying $K^2_{X}\cdot C^2\leq K_XC\cdot K_XC$.
Related Questions in PULLBACK
- Pullbacks and pushouts with surjective functions and quotient sets?
- Is a conformal transformation also a general coordinate transformation?
- Pullback square with two identical sides
- Pullbacks and differential forms, require deep explanation + algebra rules
- $\Pi_f$ for a morphism $f$ between simplicial sets
- Find a non vanishing differential form on the torus
- Suppose that $X$ is a sub affine variety of $Y$ , and let $φ : X \to Y$ be the inclusion. Prove that $φ^*$ is surjective...
- Equality Proof of Pushforward and Pullback
- Why $f'$ is an isomorphism if the rightmost square is a pullback?
- Why the rightmost square is a pullback?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Actually, it turns out that the answer to my question is very trivial:
Let us distinguish the coordinates on the two $\mathbb C^3$'s and write the map $\phi$ as $\phi(x,y,w)=(x,y,w^p)=(x,y,z)$. Then $D=\{z=0\}=\{w^p=0\}=p\cdot\{w=0\}=p\cdot\phi^*D$.