Assume two power series $\sum_{n\ge0}a_n x^n=f_a(x),\sum_{n\ge0}b_n x^n=f_b(x)$ with radii $r_a,r_b$ (respectively) and $r_a\lneqq r_b.$ Consider their Cauchy product $$\sum_{n\ge0}\left(\sum_{k=0}^n a_k b_{n-k}\right)x^n$$ and its radius of convergence $r$. We know that $r\ge r_a$. Now, could you give an example of functions such that $f_a(x)f_b(x)$ has a radius $r_a\lneqq r\lneqq r_b$? And is it possible to have $r_b\lneqq r\lneqq\infty$ (if so, could you give an example again)?
2026-02-22 22:38:50.1771799930
Radius of convergence of Cauchy product – examples
360 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in REAL-ANALYSIS
- how is my proof on equinumerous sets
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Is this relating to continuous functions conjecture correct?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Absolutely continuous functions are dense in $L^1$
- A particular exercise on convergence of recursive sequence
Related Questions in SEQUENCES-AND-SERIES
- How to show that $k < m_1+2$?
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Negative Countdown
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Show that the sequence is bounded below 3
- A particular exercise on convergence of recursive sequence
- Proving whether function-series $f_n(x) = \frac{(-1)^nx}n$
- Powers of a simple matrix and Catalan numbers
- Convergence of a rational sequence to a irrational limit
- studying the convergence of a series:
Related Questions in ANALYSIS
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Show that $d:\mathbb{C}\times\mathbb{C}\rightarrow[0,\infty[$ is a metric on $\mathbb{C}$.
- conformal mapping and rational function
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Proving whether function-series $f_n(x) = \frac{(-1)^nx}n$
- Elementary question on continuity and locally square integrability of a function
- Proving smoothness for a sequence of functions.
- How to prove that $E_P(\frac{dQ}{dP}|\mathcal{G})$ is not equal to $0$
- Integral of ratio of polynomial
- What do I miss on this function? $f(t) = (t-1)^{s/2}-t^{s/2}+1$
Related Questions in POWER-SERIES
- Conditions for the convergence of :$\cos\left( \sum_{n\geq0}{a_n}x^n\right)$
- Power series solution of $y''+e^xy' - y=0$
- Proving whether function-series $f_n(x) = \frac{(-1)^nx}n$
- Pointwise and uniform convergence of function series $f_n = x^n$
- Divergence of power series at the edge
- Maclaurin polynomial estimating $\sin 15°$
- Computing:$\sum_{n=0}^\infty\frac{3^n}{n!(n+3)}$
- How to I find the Taylor series of $\ln {\frac{|1-x|}{1+x^2}}$?
- Convergence radius of power series can be derived from root and ratio test.
- Recognizing recursion relation of series that is solutions of $y'' + y' + x^2 y = 0$ around $x_0 = 0$.
Related Questions in CAUCHY-PRODUCT
- Counterexample to Cauchy product theorem
- How to get sums like these in the form of the Cauchy Product?
- Find the Cauchy product of $e^x$ and $e^{-x}$.
- Radius of convergence of Cauchy product – examples
- Calculating the limit based on the cauchy product
- Conditionally converges $\sum_{k=0}^\infty a_n$, $\sum_{k=0}^\infty b_n$ and also their Cauchy product
- Series whose Cauchy product is absolutely convergent - A general example
- Simplifying $\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}\sum_{l=0}^{\min(n,m)}a_{l}b_{m-l}c_{n-l}$
- On the series expansion of $\frac{\operatorname{Li}_3(-x)}{1+x}$ and its usage
- Proving $\sin(2x) = 2\sin(x)\cos(x)$ using Cauchy product
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Consider the functions
$$ f(x) = \frac{1}{1-x} \frac{1}{1- x/2}, \qquad g(x) = (1-x),$$
without computing the power series representations it is clear that $f$ has radius of convergence $R_f = 1$, whilst $g$ has radius of convergence $R_g = \infty$.
However, the product
$$h(x) = f(x)g(x) = \frac{1}{1-x/2},$$
has radius of convergence $R_h = 2$, and in particular $R_f < R_h < R_g$.
Now if we consider instead
$$ f(x) = \frac{1}{\sqrt{1-x} } \frac{1}{1-x/2}, \qquad g(x) = \sqrt{1-x},$$
then we now have $R_f = R_g = 1$ and as before defining $h(x) = f(x)g(x)$ we have $R_h = 2$, so that now $R_f = R_g < R_h$.