Let $F, k'$ be two fields containing a given field $k$. The book I'm reading (Borel, Linear Algebraic Groups) uses some facts about the structure of the tensor product $F \otimes_k k'$, for example the fact that every prime ideal is minimal. Does anyone know a reference which explains some of these properties?
2025-01-12 19:14:49.1736709289
Tensor product of two fields
230 Views Asked by D_S https://math.techqa.club/user/d-s/detail AtRelated Questions in ABSTRACT-ALGEBRA
- Projective Indecomposable modules of quiver algebra
- Binary relations for Cobb-Douglas
- Relations among these polynomials
- Number of necklaces of 16 beads with 8 red beads, 4 green beads and 4 yellow beads
- Page 99 of Hindry's Arithmetics, follows from exact sequence that $\text{N}(IJ) = \text{N}(J)\text{card}(J/IJ)$?
- How to write the identity permutation as a product of transpositions
- Is $H$ a subgroup?
- $x=(0,\overline{1})$ and $y=(0,\overline{2})$ generate the same ideal in $R=\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z}$
- Having some problems with understanding conics and graphing (eccentricity)
- Is this Cayley Diagram contradictory?
Related Questions in REFERENCE-REQUEST
- Expository article on the Hilbert transform?
- Complete Reference on Mathematics at the senior undergraduate or graduate level
- What are the prerequisites for "Systems of Logic Based on Ordinals (1938)" by Turing?
- Finite Limits, Exponentiation and Sub-Object Classifiers imply Finite Co-Limits
- Application of GRR in number theory
- What are the exact critera for a CW-complex being a polytope?
- Seeking more information regarding the function $\varphi(n) = \sum_{i=1}^n \left[\binom{n}{i} \prod_{j=1}^i(i-j+1)^{2^j}\right].$
- Reference for $a^n+b^n+c^n$ has bounded distinct prime factors iff $a=b=c$
- Tensor product of two fields
- Suggestion for reference book for differential forms, differentiable manifolds and other topics
Related Questions in COMMUTATIVE-ALGEBRA
- Relations among these polynomials
- Completion of a flat morphism
- Explain the explanation of the Rabinowitsch trick
- Does intersection of smooth divisors satisfy Serre $S_2$ criterion?
- Prime ideals $\mathfrak{p} \supset \mathfrak{a}$ are finite in one-dimensional Noetherian domain
- If module $M = N + mM$, then why is $m(M/N) = M/N$?
- Isomorphism of Localization of $A_\mathfrak{p}$ and $A_\mathfrak{q}$
- Question on an exercise in Atiyah-Macdonald.
- Why the ideal of the union of coordinate axes in $\mathbb A^3$ can not be generated by two elements, i.e., is not a complete intersection?
- On the invariance of basis number
Related Questions in TENSOR-PRODUCTS
- Tensor product of two fields
- Basis of a Tensor Product
- Coalgebra differential on reduced symmetric algebra
- Double dot product in index notation
- Tensor product isomorphism
- If $\{a_{1},\ldots,a_{n}\}$ is a $K$-basis of $F$, then $\{1\otimes a_{1},\ldots,1\otimes a_{n}\}$ is an $E$-basis of $E\otimes_{K} F$.
- Converting a general tensor element into an elementary tensor
- The $-1$-eigenspace of the exchange map is $V \wedge V$
- Associativity of extension of scalar (tensor product)
- How does a Lie algebra act on a tensor product of L-modules?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity