I come up with a (maybe stupid) question: let $M$ be a smooth manifold, then the exterior differential $d$ is a natural connection on $\Omega^k(M)$, hence by dualizing we get a natural connection on $TM$? How can it be true (without a metric)?
2026-02-22 22:52:21.1771800741
There is a natrual connection on the tangent bundle?
159 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GEOMETRY
- Point in, on or out of a circle
- Find all the triangles $ABC$ for which the perpendicular line to AB halves a line segment
- How to see line bundle on $\mathbb P^1$ intuitively?
- An underdetermined system derived for rotated coordinate system
- Asymptotes of hyperbola
- Finding the range of product of two distances.
- Constrain coordinates of a point into a circle
- Position of point with respect to hyperbola
- Length of Shadow from a lamp?
- Show that the asymptotes of an hyperbola are its tangents at infinity points
Related Questions in DIFFERENTIAL-GEOMETRY
- Smooth Principal Bundle from continuous transition functions?
- Compute Thom and Euler class
- Holonomy bundle is a covering space
- Alternative definition for characteristic foliation of a surface
- Studying regular space curves when restricted to two differentiable functions
- What kind of curvature does a cylinder have?
- A new type of curvature multivector for surfaces?
- Regular surfaces with boundary and $C^1$ domains
- Show that two isometries induce the same linear mapping
- geodesic of infinite length without self-intersections
Related Questions in CONNECTIONS
- Holonomy bundle is a covering space
- How to show that extension of linear connection commutes with contraction.
- Levi-Civita-connection of an embedded submanifold is induced by the orthogonal projection of the Levi-Civita-connection of the original manifold
- Conectionless parallel transport
- Holonomy group and irreducible $\mathrm{SU}(2)$-connections
- How is the covariant derivative of a metric, $\nabla g$, defined?
- Different definitions of irreducible $\mathrm{SU}(2)$ connections
- If $\nabla X=h \cdot \text{Id}_{TM}$ for a vector field $X$ and $h \in C^{\infty}(M)$, is $h$ constant?
- Connection on a vector bundle in terms of sections
- Passage in the proof of Chern-Weil method in John Roe's Elliptic operators book
Related Questions in BIG-PICTURE
- On multiplicative and additive properties of cyclotomic polynomials
- There is a natrual connection on the tangent bundle?
- The context & motivation for the Tits alternative in combinatorial group theory
- Does the defintion of chain equivalence have anything to do with liebniz product rule of differentiation?
- Mandelbrot and Julia fractals for $z_{n+2} = z_{n+1}^2 + z_n^2 + c$
- Why care distribution functions more than random variables?
- The shape and group structure of an elliptic curve over $\overline{\mathbf{F}_p}$ and intermediary extensions
- On the clarification of Manin's remark about Gödel’s incompleteness theorems
- How do we get past how **every** outcome is very unlikely?
- What can be learned for number theory from geometrical constructions (and vice versa)?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Since you say "dualizing", I assume you're talking about the case $k=1$. If we view differential forms as alternating tensors, the exterior derivative $\Omega^1(M) \to \Omega^2(M)$ can be viewed as a map $\Gamma(T^*M) \to \Gamma(T^*M \otimes T^*M),$ which has the right "type signature" to be a connection; but it does not satisfy the (correct kind of) Leibniz rule: for a smooth function $f$ and a one-form $\theta$ we have $$d(f \theta) = f d \theta + df \wedge \theta \ne f d \theta + df \otimes \theta.$$