Let $n$ be odd, $\displaystyle v=1,...,\frac{n-1}{2}$ and $\displaystyle \zeta=e^{2\pi i/n}$.
Define the following matrices:
$$A(0,v)=\left(\begin{array}{cc}1+\zeta^{-v} & \zeta^v+\zeta^{2v}\\ \zeta^{-v}+\zeta^{-2v}&1+\zeta^{v}\end{array}\right),$$ $$A(1,v)=\left(\begin{array}{cc}\zeta^{-1}+\zeta^{-v} & \zeta^{v}\\ \zeta^{-v}&\zeta^{-1}+\zeta^{v}\end{array}\right).$$ $$A(n-1,v)=\left(\begin{array}{cc}\zeta+\zeta^{-v} & \zeta^{2v}\\ \zeta^{-2v}&\zeta+\zeta^v\end{array}\right).$$
I am hoping to calculate for each of these $A$ $$\text{Tr}\left[\left(A^k\right)^*A^k\right]=\text{Tr}\left[\left(A^*\right)^kA^k\right].$$
All I have is that $A$ and $A^*$ in general do not commute so I can't simultaneously diagonalise them necessarily.
I do know that if we write $A=D+(A-D)$ (with $D$ diagonal), that $$A^*=\overline{D}+(A-D).$$
I suppose anybody who knows anything about calculating $$\text{Tr}(A^kB^k)$$ can help.
Context: I need to calculate or rather bound these traces to calculate a distance to random for the convolution powers of a $\nu\in M_p(\mathbb{G}_n)$ for $\mathbb{G}_n$ a series of quantum groups of dimension $2n^2$ ($n$ odd). For $u=2,...,k-2$, $A(u,v)$ is diagonal so no problems there.
The first case is easy. Let $A:=A(0,v)$ and write $$A= \left(1+\zeta^v\right)\left(\begin{array}{cc}\zeta^{-v} & \zeta^v \\ \zeta^{-2v} & 1\end{array}\right)=\left(1+\zeta^v\right) \alpha^T\otimes \beta ,$$ where $\alpha=\left(1\;\;\zeta^{-v}\right)$, $\beta=\left(\zeta^{-v}\;\; \zeta^v\right)$. This implies that $$A^*=\left(1+\zeta^{-v}\right)\bar{\beta}^T\otimes\bar{\alpha}.$$ That both matrices have rank $1$ reduces the computation of traces to scalar products of $\alpha,\bar{\alpha},\beta,\bar{\beta}$. One has for instance \begin{align} \operatorname{Tr}\left(\left(A^*\right)^kA^k\right)&= \left(1+\zeta^v\right)^k\left(1+\zeta^{-v}\right)^k \left(\bar\alpha \cdot \bar{\beta}^T\right)^{k-1}\left(\bar{\alpha}\cdot \alpha^T\right)\left(\beta\cdot \alpha^T\right)^{k-1}\left(\beta\cdot\bar{\beta}^T\right)=\\ &=4\left(1+\zeta^v\right)^{2k-1}\left(1+\zeta^{-v}\right)^{2k-1}. \end{align}
In the other two cases, I do not see a clever method, but a straightforward approach would work as well. Diagonalize $A,A^*$ as $$A=PDP^{-1},\qquad A^*=P^{-*}\bar{D}P^*,$$ then $$\operatorname{Tr}\left(\left(A^*\right)^kA^k\right)= \operatorname{Tr}\left(PD^kP^{-1}P^{-*}\bar{D}^kP^*\right),$$ with $D$, $\bar{D}$ diagonal. Thus one only needs to compute diagonalizing transformation $P$ built from the eigenvectors of $A$ and then to compute the trace of the product of six matrices.