Let $S,C$ be given by $$ S = \int _{0}^{\infty} \sin(x^2)\,dx,\,\,C = \int _{0}^{\infty} \cos(x^2)\,dx $$I know you can show they're equal to each other using complex contour integration, and I've seen the posts on here using partial fractions and the like. I'm looking for a transformation, something like $x=f(z)$ to turn $S$ into $C$ or vice versa.
2026-02-22 23:59:45.1771804785
Transform Fresnel integrals into each other
61 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in INTEGRATION
- How can I prove that $\int_0^{\frac{\pi}{2}}\frac{\ln(1+\cos(\alpha)\cos(x))}{\cos(x)}dx=\frac{1}{2}\left(\frac{\pi^2}{4}-\alpha^2\right)$?
- How to integrate $\int_{0}^{t}{\frac{\cos u}{\cosh^2 u}du}$?
- Show that $x\longmapsto \int_{\mathbb R^n}\frac{f(y)}{|x-y|^{n-\alpha }}dy$ is integrable.
- How to find the unit tangent vector of a curve in R^3
- multiplying the integrands in an inequality of integrals with same limits
- Closed form of integration
- Proving smoothness for a sequence of functions.
- Random variables in integrals, how to analyze?
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- Which type of Riemann Sum is the most accurate?
Related Questions in SUBSTITUTION
- strange partial integration
- $\int \ x\sqrt{1-x^2}\,dx$, by the substitution $x= \cos t$
- What is the range of the function $f(x)=\frac{4x(x^2+1)}{x^2+(x^2+1)^2}$?
- polar coordinate subtitution
- Trouble computing $\int_0^\pi e^{ix} dx$
- Symmetric polynomial written in elementary polynomials
- Prove that $\frac{1}{\sqrt{ab+a+2}}+ \frac{1}{\sqrt{bc+b+2}}+ \frac{1}{\sqrt{ac+c+2}} \leq \frac{3}{2}$
- Polynomial Equation Problem with Complex Roots
- Integral involving logarithmics and powers: $ \int_{0}^{D} z \cdot (\sqrt{1+z^{a}})^{b} \cdot \ln(\sqrt{1+z^{a}})\; \mathrm dz $
- Inequality with $ab+bc+ca=3$
Related Questions in FRESNEL-INTEGRALS
- Proving that $\int_{0}^{+\infty}e^{ix^n}\text{d}x=\Gamma\left(1+\frac{1}{n}\right)e^{i\pi/2n}$
- How does Raph Levien's Spiro choose angles for the ends of a path?
- Numerical solution of generalized Fresnel integral
- Show that $\int_0^n\sin x^2dx$ converges
- Generalized Fresnel Integral using Laplace
- Derivative of Fresnel integral function with functional limits
- How to show that $\int_0^1 \sin \pi t ~ \left( \zeta (\frac12, \frac{t}{2})-\zeta (\frac12, \frac{t+1}{2}) \right) dt=1$?
- Problem proving the Fresnel integral
- Laplace transforms with Fresnel(?) integrals
- Asymptotic behavior of Fresnel-like integral of an exponential
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
I think I can explain it. Start with $$ \Gamma(z) = \int_{0}^{\infty}y^{z-1}e^{-y}\,dy $$Using Euler's formula, we have $$ C + i S = \int_{0}^{\infty} e^{i t^2}\,dt $$ $$ =\frac{e^{\pi i/(4)}}{2}\int _{0}^{\infty}s^{1/2-1} e^{-s}\,ds $$ $$ = \frac{e^{\pi i/(4)}}{2}\Gamma(1/2)= {e^{\pi i/(4)}}\Gamma(3/2) $$ This recovers $\displaystyle{S=C=\sqrt{\frac{\pi}{8}}}$. In fact, this is a general result: with $T\in \{\sin,\cos\}$ and $\Re(n)>1$, we have $$ \Gamma(1+1/n)T(\pi/(2n))= \int _{0}^{\infty} T(t^n)\,dt $$