What is the Galois group of some characteristic polynomial.

120 Views Asked by At

Let $B_n = circ( (d_0, d_1,\cdots,d_{r-1}))$ be a circulant matrix, where $d_0 < d_1 \cdots < d_{r-1}$ are the divisors of $n$. Problem 1: Is it always true that: $\chi_{B_n}(t) = m_{B_n}(t)$ hence the characteristic and minimal polynomial are always the same.

Problem 2: The characteristic polynomial is always separable.

Problem 3: What is the Galois group of $\chi_{B_n}(t)$ over the rationals? (If it is too difficult to give a proof, then a guess is also ok, as long as it is compatible with the empirical data given below.)

Here are some characteristic polynomials for different values of n :

1 t - 1

2 (t - 3) * (t + 1)

3 (t - 4) * (t + 2)

4 (t - 7) * (t^2 + 4*t + 7)

5 (t - 6) * (t + 4)

6 (t - 12) * (t + 4) * (t^2 + 4*t + 20)

7 (t - 8) * (t + 6)

8 (t - 15) * (t + 5) * (t^2 + 6*t + 45)

9 (t - 13) * (t^2 + 10*t + 52)

10 (t - 18) * (t + 6) * (t^2 + 8*t + 80)

11 (t - 12) * (t + 10)

12 (t - 28) * (t + 8) * (t^2 + t + 127) * (t^2 + 13*t + 79)

13 (t - 14) * (t + 12)

14 (t - 24) * (t + 8) * (t^2 + 12*t + 180)

15 (t - 24) * (t + 12) * (t^2 + 8*t + 160)

16 (t - 31) * (t^4 + 26*t^3 + 496*t^2 + 5766*t + 29791)

17 (t - 18) * (t + 16)

18 (t - 39) * (t + 13) * (t^2 + 2*t + 364) * (t^2 + 18*t + 156)

19 (t - 20) * (t + 18)

20 (t - 42) * (t + 12) * (t^2 + 432) * (t^2 + 24*t + 252)

21 (t - 32) * (t + 16) * (t^2 + 12*t + 360)

22 (t - 36) * (t + 12) * (t^2 + 20*t + 500)

23 (t - 24) * (t + 22)

24 (t - 60) * (t + 16) * (t^2 + 16*t + 388) * (t^4 + 20*t^3 + 792*t^2 + 20024*t + 239972)

25 (t - 31) * (t^2 + 28*t + 496)

26 (t - 42) * (t + 14) * (t^2 + 24*t + 720)

27 (t - 40) * (t + 20) * (t^2 + 16*t + 640)

28 (t - 56) * (t + 18) * (t^2 + 972) * (t^2 + 32*t + 448)

Using the theory of circulant matrices I can show, that: $\lambda_j = \sum_{k=0}^{r-1}{d_k \cdot \omega_j^k}$ for $j=0,\cdots,r-1$ are the eigenvalues of $\chi_{B_n}(t)$ where $\omega_j = \exp(\frac{2 \pi I j}{r})$ are $r$-roots of unity. Using this, one can show that $t-\sigma(n)$ is always a divisor of $\chi_{B_n}(t)$.

Edit: On request:

30 $(t - 72) * (t + 22) * (t^2 + 22*t + 650) * (t^4 + 20*t^3 + 1238*t^2 + 38308*t + 542722)$

36 $(t - 91) * (t^2 + 40*t + 763) * (t^6 + 42*t^5 + 3003*t^4 + 139375*t^3 + 4368018*t^2 + 106705623*t + 1248523057)$

48 $(t - 124) * (t + 32) * (t^4 + 3*t^3 + 3794*t^2 + 133632*t + 6044951) * (t^4 + 79*t^3 + 4166*t^2 + 141764*t + 2359631)$