For $G=\mathbb{R}^d$ I know that a stationary point process $X$ either has 0 or infinitely many points, a.s. Daley and Vere-Jones refer to this as the 0-Infinity dichotomy. They hint that this fact is known in a more general setting. What is the most general setting for which the answer is known? In particular does it hold for all locally compact second countable hausdorff topological groups?
2025-01-13 05:16:41.1736745401
When does a stationary point process on group $G$ have $0$ or $\infty$ many points a.s.?
64 Views Asked by nullUser https://math.techqa.club/user/nulluser/detail At
1
There are 1 best solutions below
Related Questions in PROBABILITY
- Given a random variable X, prove f(x) is a probability function.
- About conditional density function.
- Expected value & Lebesgue integral
- Feeling overwhelmed with this math explanation, what videos, courses, and books should I learn to help me digest this?
- In how many ways can 8 people be seated in a row? What is the probability that Al sits next to Bob?
- How to find probability after finding the CDF of a max?
- Does taking the limit of the inclusion-exclusion formula work here?
- What is the probability that the accumulated sum is L at some point?
- What is the probability of a power set of the sample space?
- Combinatorics Problem - Clients using two seperate services
Related Questions in PROBABILITY-THEORY
- Given a random variable X, prove f(x) is a probability function.
- What is the probability that the accumulated sum is L at some point?
- $f(t)-$a characteristic function. Prove that $|f(t)|$ does not have to be a characteristic function based on the example:
- Lower bound for the cumulative distribution function on the left of the mean
- What is the probability of the product rolled with 4 different dice being 24?
- Convergence in probability of random probability measures
- Distribution of $Y$ derived from standard normal
- Proving that $N(\cdot \cap A)$ is a poisson random measure
- Why the case of independence of random variables is more important than any other specific type of dependence?
- Discrete probability - man getting caught cheating on public transport
Related Questions in REFERENCE-REQUEST
- Expository article on the Hilbert transform?
- Interesting areas of study in point-set topology
- Complete Reference on Mathematics at the senior undergraduate or graduate level
- What are the prerequisites for "Systems of Logic Based on Ordinals (1938)" by Turing?
- Finite Limits, Exponentiation and Sub-Object Classifiers imply Finite Co-Limits
- Application of GRR in number theory
- What are the exact critera for a CW-complex being a polytope?
- Seeking more information regarding the function $\varphi(n) = \sum_{i=1}^n \left[\binom{n}{i} \prod_{j=1}^i(i-j+1)^{2^j}\right].$
- Reference for $a^n+b^n+c^n$ has bounded distinct prime factors iff $a=b=c$
- Tensor product of two fields
Related Questions in POINT-PROCESSES
- Proving self-consistency of sets of postulates e.g. for spatial Poisson point process
- Compensated Poisson Random Measures and Levy Processes
- Intuition behind the renewal equation
- Convolution form of the renewal density
- Upcrossings of the forward recurrence time
- Simulating a homogeneous Poisson process with finite number of points on $\mathbb{R}^2$
- Why can we choose a sequence of points uniformly?
- Intuitive difference between Laplace functional of Poisson Point Process (PPP) and independently marked PPP
- When does a stationary point process on group $G$ have $0$ or $\infty$ many points a.s.?
- Explain the orderliness of Poisson process
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
What appears to be the key to the D&V-J proof is that there is a non-empty open set $U\subset\Bbb R^d$ sand an infinite countable collection of points $\{x_n\}$ such that the translates $\{x_n+U: n\in\Bbb N\}$ are disjoint. If your LCCB group has this property, then the proof will still work.