So I was trying to factorize some tensor $w_{mn}$ into $v_m \otimes u_n$.
But such factorization does not always exist. Therefore I turned into an estimate problem:
Given complex valued $A_{m\times n}$, how can we find $u_{m\times 1}, v_{n\times 1}$ that minimize $\|A-u\otimes v\| = \|A-u^Tv\|$?
In which the norm chosen can be arbitrary, for example, l2 norm (square variance).
What I really need is some sort of numerical algorithm that is efficient enough. But I just cannot think of any easy way to solve it.
2026-02-22 19:50:23.1771789823
About factorization with respect to tensor product.
225 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in LINEAR-ALGEBRA
- An underdetermined system derived for rotated coordinate system
- How to prove the following equality with matrix norm?
- Alternate basis for a subspace of $\mathcal P_3(\mathbb R)$?
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Summation in subsets
- $C=AB-BA$. If $CA=AC$, then $C$ is not invertible.
- Basis of span in $R^4$
- Prove if A is regular skew symmetric, I+A is regular (with obstacles)
Related Questions in OPTIMIZATION
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- optimization with strict inequality of variables
- Gradient of Cost Function To Find Matrix Factorization
- Calculation of distance of a point from a curve
- Find all local maxima and minima of $x^2+y^2$ subject to the constraint $x^2+2y=6$. Does $x^2+y^2$ have a global max/min on the same constraint?
- What does it mean to dualize a constraint in the context of Lagrangian relaxation?
- Modified conjugate gradient method to minimise quadratic functional restricted to positive solutions
- Building the model for a Linear Programming Problem
- Maximize the function
- Transform LMI problem into different SDP form
Related Questions in TENSOR-PRODUCTS
- Tensor product commutes with infinite products
- Inclusions in tensor products
- How to prove that $f\otimes g: V\otimes W\to X\otimes Y$ is a monomorphism
- What does a direct sum of tensor products look like?
- Tensors transformations under $so(4)$
- Tensor modules of tensor algebras
- projective and Haagerup tensor norms
- Algebraic Tensor product of Hilbert spaces
- Why $\displaystyle\lim_{n\to+\infty}x_n\otimes y_n=x\otimes y\;?$
- Proposition 3.7 in Atiyah-Macdonald (Tensor product of fractions is fraction of tensor product)
Related Questions in QUADRATIC-PROGRAMMING
- Using a Lagrange multiplier to handle an inequality constraint
- Given matrix $Q$ and vector $s$, find a vector $w$ that minimizes $\| Qw-s \|^2$
- Linear Matrix Least Squares with Linear Equality Constraint - Minimize $ {\left\| A - B \right\|}_{F}^{2} $ Subject to $ B x = v $
- Closed form solution to this constrained optimization?
- Bound on the solution of a constrained least squares problem
- Minimisation of a scalar function with respect to a vector
- How to reformulate an objective function with absolute
- Generalized Projection of a Matrix onto the Non Negative Orthant
- Optimize quadratic non-convex function with project gradient descent
- About factorization with respect to tensor product.
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?