I have a problem about a positive definite matrix. I cannot prove this.
Let $B= [b_{ij}]$ be a $m \times m$ matrix. Let $\overline{B}^t$ be the conjugate transpose of $B$. If we have a strict inequality on the spectral radius $$\rho(\overline{B}^tB) < 1$$ show that the block matrix $$\begin{bmatrix} I_n & B \\ \overline{B}^t & I_n \end{bmatrix}$$ is positive definite.
If you don't mind, help me to solve this problem.
Remake $\rho(A) = \max_i \lvert \lambda_i \rvert $ where $\lambda_i$ is eigenvalue of $A$. A matrix $A$ is positive definite if $\overline{x}^t A x >0$ for all $x\in \mathbb{C}^n$ and $ A = \overline{A}^t $.
Directly consider the eigenvalue equation: $$\begin{bmatrix}I & B \\ \overline{B}^T & I\end{bmatrix}\begin{bmatrix}u \\ v\end{bmatrix} = \lambda \begin{bmatrix}u \\ v\end{bmatrix}.$$ Bring the identity portion to the right hand side, to get: $$\begin{bmatrix} & B \\ \overline{B}^T & \end{bmatrix}\begin{bmatrix}u \\ v\end{bmatrix} = (\lambda-1) \begin{bmatrix}u \\ v\end{bmatrix}.$$ This is the same as the following two equations, \begin{align} Bv &= (\lambda-1) u \\ \overline{B}^T u &= (\lambda-1) v. \end{align} Solving the first equation for $u$ and substituting it into the second yields, $$\overline{B}^T B v = (\lambda-1)^2 v.$$ In other words, for $\lambda$ to be an eigenvalue of your big matrix, $(\lambda-1)^2$ must be an eigenvalue of $B^TB$. When the eigenvalues of $B^TB$ are less than 1, as presupposed by the question, this means, $$(\lambda-1)^2 < 1$$ and so the eigenvalues of the big matrix, $\lambda$, lie in the interval $$\lambda \in (0,2).$$ In particular this implies that the eigenvalues are strictly positive, so the big matrix is positive definite.