Is it true in general that if $A$ and $B$ are two $n \times n$ matrices, then the determinant of the anti-diagonal block matrix
$$ J = \left[\begin{array}{cc} 0 & A \\ B& 0 \end{array}\right] $$
is $\det(J)=\det(B)\det(A)$? It is simple to prove this if $n=2$, but I have no idea on how to generalize it.
One has: $$J:=\begin{pmatrix}0 & A\\B & 0\end{pmatrix}=\begin{pmatrix}A& 0\\0 & B\end{pmatrix}\times\begin{pmatrix}0 & I_n\\I_n & 0\end{pmatrix}.$$ You only have to compute: $$\varepsilon:=\det\left(\begin{pmatrix}0 & I_n\\I_n & 0\end{pmatrix}\right).$$ Indeed, using the first equality, one has: $$\det(J)=\varepsilon\det(A)\det(B).$$ If $n$ is odd, the result appears to be false, you will get: $$\det(J)=-\det(A)\det(B).$$