I'm trying to calculate the following limit:
$$\lim_{x \rightarrow 0^+} \frac{\displaystyle\arctan (\log (1+\sqrt x)) \sin^3(x^\frac34)}{\displaystyle (e^{\tan(x)}-1)(1-\sin^2(x))}$$
For WolframAlpha the result is: $0$.
I did those steps, using Mac-Laurin:
$$e^{\tan(x)}=1+x+\frac{x^2}{2}+ o(x^2)$$ $$\sin^2(x)=x^2+ o(x^2)$$ Hence, the denominator became: $$x+ \frac{x^2}{2}+ o(x^2)$$ Then, I'm having issues with numerator: $$\arctan (\log (1+\sqrt x)) = \sqrt x - \frac {x}{2} + o(x^2)$$ $$\sin^3(x^\frac34)=x^{\frac94}+ o(x^3)$$
Someone could say me how to deal with the Numerator, o give me a hint for solve it? Thank you.
Note that by standard limits
$$\frac{\arctan (\log (1+\sqrt x))\cdot \sin^3(x^\frac34)}{(e^{\tan x}-1)\cdot (1-\sin^2 x)}=\frac{\arctan ( \log (1+\sqrt x) )}{ \log (1+\sqrt x) }\cdot\frac{ \log (1+\sqrt x)}{\sqrt x}\cdot \frac{\sin^3(x^\frac34)}{x^\frac94}\cdot \frac{\tan x}{e^{\tan x}-1}\cdot\frac{x}{\tan x}\cdot \frac{\sqrt x\cdot x^\frac94 }{x(1-\sin^2 x) }\to1\cdot1\cdot1\cdot1\cdot1\cdot0=0$$
indeed
$$\frac{\sqrt x\cdot x^\frac94 }{x(1-\sin^2 x) }=\frac{x^\frac74 }{(1-\sin^2 x) }\to \frac01=0$$