I wanted to express angle between two 3D vectors pointing in arbitrary direction say $\vec{r}$ and $\vec{R}$. If I take the z axis along any other direction (other than the direction of $\vec{R}$ and $\vec{r}$). Both vectors will have polar coordinates. $$r,\theta,\phi$$ and $$R', \theta' , \phi'$$ respectively for both $\vec{r}$ and $\vec{R}$. Now how do I express the angle between the vectors in terms of theses polar angles. Can some one suggest some good references to understand better about these concepts ?
2026-02-22 21:00:17.1771794017
Expressing angle between two vectors in 3D in terms of spherical polar coordinates
8.2k Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in VECTORS
- Proof that $\left(\vec a \times \vec b \right) \times \vec a = 0$ using index notation.
- Constrain coordinates of a point into a circle
- Why is the derivative of a vector in polar form the cross product?
- Why does AB+BC=AC when adding vectors?
- Prove if the following vectors are orthonormal set
- Stokes theorem integral, normal vector confusion
- Finding a unit vector that gives the maximum directional derivative of a vector field
- Given two non-diagonal points of a square, find the other 2 in closed form
- $dr$ in polar co-ordinates
- How to find reflection of $(a,b)$ along $y=x, y = -x$
Related Questions in ANALYTIC-GEOMETRY
- Asymptotes of hyperbola
- Position of point with respect to hyperbola
- Length of Shadow from a lamp?
- Show that the asymptotes of an hyperbola are its tangents at infinity points
- Surface by revolution
- All possible values of coordinate k such that triangle ABC is a right triangle?
- Triangle inside triangle
- Is there an equation to describe regular polytopes?
- How do I prove that the gradient between a fixed and any general point on a given line is $m$?
- Three-Dimensional coordinate system
Related Questions in VECTOR-ANALYSIS
- Does curl vector influence the final destination of a particle?
- Gradient and Hessian of quadratic form
- Regular surfaces with boundary and $C^1$ domains
- Estimation of connected components
- Finding a unit vector that gives the maximum directional derivative of a vector field
- Gradient of transpose of a vector.
- Solve line integral
- Directional derivative: what is the relation between definition by limit and definition as dot product?
- Chain rule with intermediate vector function
- For which $g$ is $f(x)= g(||x||) \frac{x}{||x||}$ divergence free.
Related Questions in SPHERICAL-GEOMETRY
- Name of some projection of sphere onto $\mathbb{R}^2$
- Can you generalize the Triangle group to other polygons?
- What length would the sides of a triangle over Earth's surface be for the sum of its angles to be 180.1°
- why is the content of a n-sphere given by $\int_{0}^{R} S_nr^{n-1}dr = {S_nR^n \over n} $?
- Rotate a point according to a perpendicular point
- Rotate the surface of a sphere using altitude
- Is there a nice way to calculate $\int (1-x_3)^2$ over the hemisphere?
- Integrate the normal vector over a spherical polygon
- Spherical Geometry inequalities with triangles using main formula
- How can I define a region on the surface of a sphere in terms of the coordinates of the vertices of the boundary of the region?
Related Questions in SPHERICAL-TRIGONOMETRY
- Convert a vector in Lambert Conformal Conical Projection to Cartesian
- Integrate the normal vector over a spherical polygon
- Why is $e^{i\pi}= -1$
- Spherical trigometry for Sailing Problems
- Angle between two points on a sphere
- Spherical Trigonometry for Horizontal coordinate system
- Find Latitude x miles north of starting latitude using ellipsoid earth model
- Expressing angle between two vectors in 3D in terms of spherical polar coordinates
- Help with direct tunnel distance between two lat /long coordinates.
- Dividing spherical triangles on sphere into 4 self similar smaller spherical triangles?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Using the dot product, the angle between $\vec{r}$ and $\vec{R}$ is
$\cos^{-1} \left( \frac{\vec{r}.\vec{R}}{|\vec{r}||\vec{R}|}\right) = \cos^{-1} \left( \frac{\vec{r}.\vec{R}}{rR'}\right)$
Calculting the dot product of $\vec{r}$ and $\vec{R}$ is simplest if you convert them to Cartesian co-ordinates first:
$\vec{r} = (r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)$
$\vec{R} = (R' \sin \theta' \cos \phi', R' \sin \theta' \sin \phi', R' \cos \theta')$