I am given the following Hilbert-style system (for intuitionistic propositional logic):
Axiom schemes:
- $\phi\vee\phi\rightarrow\phi$
- $\phi\rightarrow\phi\wedge\phi$
- $\phi\rightarrow\phi\vee\psi$
- $\phi\wedge\psi\rightarrow\phi$
- $\phi\vee\psi\rightarrow\psi\vee\phi$
- $\phi\wedge\psi\rightarrow\psi\vee\phi$
- $\bot\rightarrow\phi$
Inference rules:
- $\phi$ and $\phi\rightarrow\psi$ imply $\psi$
- $\phi\rightarrow\psi$ and $\psi\rightarrow\chi$ imply $\phi\rightarrow \chi$
- $\phi\wedge\psi\rightarrow\chi$ implies $\phi\rightarrow(\psi\rightarrow\chi)$
- $\phi\rightarrow(\psi\rightarrow\chi)$ implies $\phi\wedge\psi\rightarrow\chi$
- $\phi\rightarrow\psi$ implies $\phi\vee\chi\rightarrow\psi\vee\chi$
We define, for a set $\Gamma$ of propositional formulas and a formula $\phi$, we define $\Gamma\vdash_{IL}\phi$ as ''There exists a proof in this Hilbert-style proof system (for intuitionistic logic) of $\phi$ from $\Gamma$.
I am now asked to prove (in essence, the actual question is broader): $$\text{if }\Gamma\vdash_{IL}\psi\text{ and }\Gamma\vdash_{IL}\chi\text{, then }\Gamma\vdash_{IL}\psi\wedge\chi$$ In a proof system like natural deduction, this would be proved by a conjunction introduction, but using above Hilbert-rules, I have not in any way been able to get some kind of conjunction introduction. For instance, using axiom scheme 2 didn't get me anywhere, we could think of substituting $(\psi\wedge\chi)$ for $\phi$, or just substituting $\psi$ for $\phi$, but no inference rule will then get us to the wanted conclusion.
Can the statement be proved using this Hilbert system?
You can prove $$\psi\land \chi \to \psi\land\chi$$ by going through $(\psi\land\chi)\land(\psi\land\chi)$. Now apply rule 10 to get $$ \psi \to (\chi\to\psi\land\chi) $$ Then your assumed derivations of $\psi$ and $\chi$, plus modus ponens twice concludes $\psi\land \chi$.