How to find infinite optimal solutions for linear program?

4.5k Views Asked by At

Consider $$\text{max} \ 5x_1+3x_2$$ $$s.t.\ 2x_1+x_2\le 8$$ $$3x_1+2x_2\ge 6$$ $$x_1,x_2\ge0$$

Change the objective function by another function such that the resulting program has infinite optimal solutions.


Any hint please?

How will I solve this?

2

There are 2 best solutions below

3
On BEST ANSWER

Make the objective function a constant and every feasible point is an optimal solution.

Remark: You still have to prove that the feasible set has infinitely many points. You might like to use convexity to prove this.

0
On

You can visualize this very nicely, see https://www.desmos.com/calculator/jiukwzxdxt

If you change the objective function so that its contour lines are perpendicular to one of the edges of the feasible region, you also get infinitely many solutions.