If $m,n$ and $p $ are positive integers show that : $$\frac{2^{mn}}{p}+\frac{2^{np}}{m}+\frac{2^{pm}}{n}\geq 2(m+n+p).$$ I tried using Bernoulli inequality and then Hölder's, but I cannot prove this inequality.
2026-02-22 19:55:05.1771790105
Inequality with powers of 2
123 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
2
There are 2 best solutions below
Related Questions in INEQUALITY
- Confirmation of Proof: $\forall n \in \mathbb{N}, \ \pi (n) \geqslant \frac{\log n}{2\log 2}$
- Prove or disprove the following inequality
- Proving that: $||x|^{s/2}-|y|^{s/2}|\le 2|x-y|^{s/2}$
- Show that $x\longmapsto \int_{\mathbb R^n}\frac{f(y)}{|x-y|^{n-\alpha }}dy$ is integrable.
- Solution to a hard inequality
- Is every finite descending sequence in [0,1] in convex hull of certain points?
- Bound for difference between arithmetic and geometric mean
- multiplying the integrands in an inequality of integrals with same limits
- How to prove that $\pi^{e^{\pi^e}}<e^{\pi^{e^{\pi}}}$
- Proving a small inequality
Related Questions in EXPONENTIAL-FUNCTION
- How to solve the exponential equation $e^{a+bx}+e^{c+dx}=1$?
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- How do you calculate the horizontal asymptote for a declining exponential?
- Intersection points of $2^x$ and $x^2$
- Integrate exponential over shifted square root
- Unusual Logarithm Problem
- $f'(x)=af(x) \Rightarrow f(x)=e^{ax} f(0)$
- How long will it take the average person to finish a test with $X$ questions.
- The equation $e^{x^3-x} - 2 = 0$ has solutions...
- Solve for the value of k for $(1+\frac{e^k}{e^k+1})^n$
Related Questions in INTEGERS
- Name of Theorem for Coloring of $\{1, \dots, n\}$
- Which sets of base 10 digits have the property that, for every $n$, there is a $n$-digit number made up of these digits that is divisible by $5^n$?
- Ring of remainders definition
- Proof of well-ordering property
- Compute a division with integer and fractional part
- Solving for 4 variables using only 2 equations
- For any natural numbers a, b, c, d if a*b = c*d is it possible that a + b + c + d is prime number
- Can I say this :$e^{{(294204)}^{1/11}}-{(294204)}^{1/11}$ integer number or almost integer?
- Pack two fractional values into a single integer while preserving a total order
- What will be the difference?
Related Questions in SUBSTITUTION
- strange partial integration
- $\int \ x\sqrt{1-x^2}\,dx$, by the substitution $x= \cos t$
- What is the range of the function $f(x)=\frac{4x(x^2+1)}{x^2+(x^2+1)^2}$?
- polar coordinate subtitution
- Trouble computing $\int_0^\pi e^{ix} dx$
- Symmetric polynomial written in elementary polynomials
- Prove that $\frac{1}{\sqrt{ab+a+2}}+ \frac{1}{\sqrt{bc+b+2}}+ \frac{1}{\sqrt{ac+c+2}} \leq \frac{3}{2}$
- Polynomial Equation Problem with Complex Roots
- Integral involving logarithmics and powers: $ \int_{0}^{D} z \cdot (\sqrt{1+z^{a}})^{b} \cdot \ln(\sqrt{1+z^{a}})\; \mathrm dz $
- Inequality with $ab+bc+ca=3$
Related Questions in MUIRHEAD-INEQUALITY
- for $x,y,z\ge 0$, $x+y+z=2$, prove $\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\ge\frac{18}{13}$
- Inequality with powers of 2
- Prove this Hard inequality to CS or AM-GM?
- Inequality involving cyclic sums (Muirhead? Schur? Something else?)
- Inequality with $abc=1$,
- Muirhead's inequality -- equality occur
- Proof of Muirhead's inequality
- An inequality with a condition
- Prove $\sum\limits_{cyc}\frac{1}{x^{2017}+ x^{2015}+ 1} \geq 1$ with $x,\,y,\,z>0,\,xyz= 1$
- If $a$, $b$ and $c$ are positive then $\sum\limits_{cyc} \frac{a^{2}}{b^{2}+c^{2}+bc}\geq 1$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Note that for $k\ge 1 \implies 2^k\geq 2k$ then
$$\frac{2^{mn}}{p}+\frac{2^{np}}{m}+\frac{2^{pm}}{n}\geq \frac{2{mn}}{p}+\frac{2{np}}{m}+\frac{2{pm}}{n}\geq 2(m+n+p)$$
which is true by Muirhead's inequality since
$$\frac{{mn}}{p}+\frac{{np}}{m}+\frac{{pm}}{n}\geq m+n+p \iff m^2n^2+n^2p^2+p^2n^2\geq m^2np+n^2mp+p^2mn$$