An equality occurs in muirhead's inequality when all variables are the same. But is it possible for the equality to occur when not all variables are the same? (also all variables are non-zero) If so, is there a way to analyse it?
2026-02-22 19:49:50.1771789790
Muirhead's inequality -- equality occur
84 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in INEQUALITY
- Confirmation of Proof: $\forall n \in \mathbb{N}, \ \pi (n) \geqslant \frac{\log n}{2\log 2}$
- Prove or disprove the following inequality
- Proving that: $||x|^{s/2}-|y|^{s/2}|\le 2|x-y|^{s/2}$
- Show that $x\longmapsto \int_{\mathbb R^n}\frac{f(y)}{|x-y|^{n-\alpha }}dy$ is integrable.
- Solution to a hard inequality
- Is every finite descending sequence in [0,1] in convex hull of certain points?
- Bound for difference between arithmetic and geometric mean
- multiplying the integrands in an inequality of integrals with same limits
- How to prove that $\pi^{e^{\pi^e}}<e^{\pi^{e^{\pi}}}$
- Proving a small inequality
Related Questions in POLYNOMIALS
- Alternate basis for a subspace of $\mathcal P_3(\mathbb R)$?
- Integral Domain and Degree of Polynomials in $R[X]$
- Can $P^3 - Q^2$ have degree 1?
- System of equations with different exponents
- Can we find integers $x$ and $y$ such that $f,g,h$ are strictely positive integers
- Dividing a polynomial
- polynomial remainder theorem proof, is it legit?
- Polyomial function over ring GF(3)
- If $P$ is a prime ideal of $R[x;\delta]$ such as $P\cap R=\{0\}$, is $P(Q[x;\delta])$ also prime?
- $x^{2}(x−1)^{2}(x^2+1)+y^2$ is irreducible over $\mathbb{C}[x,y].$
Related Questions in EXAMPLES-COUNTEREXAMPLES
- A congruence with the Euler's totient function and sum of divisors function
- Seeking an example of Schwartz function $f$ such that $ \int_{\bf R}\left|\frac{f(x-y)}{y}\right|\ dy=\infty$
- Inner Product Uniqueness
- Metric on a linear space is induced by norm if and only if the metric is homogeneous and translation invariant
- Why do I need boundedness for a a closed subset of $\mathbb{R}$ to have a maximum?
- A congruence with the Euler's totient function and number of divisors function
- Analysis Counterexamples
- A congruence involving Mersenne numbers
- If $\|\ f \|\ = \max_{|x|=1} |f(x)|$ then is $\|\ f \|\ \|\ f^{-1}\|\ = 1$ for all $f\in \mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)$?
- Unbounded Feasible Region
Related Questions in SYMMETRIC-POLYNOMIALS
- Symmetric polynomial written in elementary polynomials
- Roots of a polynomial : finding the sum of the squares of the product of two roots
- Find the value of a third order circulant type determinant
- An algebraic inequality involving $\sum_{cyc} \frac1{(a+2b+3c)^2}$
- Show that if $x+y+z=x^2+y^2+z^2=x^3+y^3+z^3=1$ then $xyz=0$
- Find the value of $\frac{a+b+c}{d+e+f}$
- Equation System with 4 real variables
- How can I prove the following equality given two constraints?
- Find the minimum value of $f(x,y,z)=\frac{x^2}{(x+y)(x+z)}+\frac{y^2}{(y+z)(y+x)}+\frac{z^2}{(z+x)(z+y)}$.
- Given a set of polynomials that correspond to weak compositions of an integer, are all possible products of d such polynomials linearly independent?
Related Questions in MUIRHEAD-INEQUALITY
- for $x,y,z\ge 0$, $x+y+z=2$, prove $\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\ge\frac{18}{13}$
- Inequality with powers of 2
- Prove this Hard inequality to CS or AM-GM?
- Inequality involving cyclic sums (Muirhead? Schur? Something else?)
- Inequality with $abc=1$,
- Muirhead's inequality -- equality occur
- Proof of Muirhead's inequality
- An inequality with a condition
- Prove $\sum\limits_{cyc}\frac{1}{x^{2017}+ x^{2015}+ 1} \geq 1$ with $x,\,y,\,z>0,\,xyz= 1$
- If $a$, $b$ and $c$ are positive then $\sum\limits_{cyc} \frac{a^{2}}{b^{2}+c^{2}+bc}\geq 1$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Yes, it's possible.
For example, for non-negatives $a$, $b$ and $c$ by Muirhead we have $$a^3b+a^3c+b^3a+b^3c+c^3a+c^3b\geq2(a^2b^2+a^2c^2+b^2c^2),$$ where the equality occurs also for $(a,b,c)=(1,0,0).$