Is there a way to solve a very complicated equation in one variable?

455 Views Asked by At

Essentially solving for x in this equation:

$\frac{(631.60353-0.078408πx^3-3.44416x^2)[π(\sin31.72778)+2]}{6.54928x+0.22365x^2} + 15.4-\frac{x(\sin31.72778+2)+7.7}{6.54928x+0.22365x^2}(0.235224πx^2+6.88832x+\frac{(631.60353-0.078408πx^3-3.44416x^2)(6.54928+0.4473x)}{6.54928x+0.22365x^2})=0$

Thanks everyone!

${}{}{}{}{}{}{}$

1

There are 1 best solutions below

0
On BEST ANSWER

Using this code in mathematica:

$\text{Solve}\left[-\frac{\left(0.235224 \pi x^2+\frac{\left(-0.078408 \pi x^2-3.44416 x^2+631.604\right) (0.4473 x+6.54928)}{0.22365 x^2+6.54928 x}+6.88832 x\right) (x (\sin (31.7278 {}^{\circ})+2)+7.7)}{0.22365 x^2+6.54928 x}+\frac{\left(-0.078408 \pi x^3-3.44416 x^2+631.604\right) (\pi \sin (31.7278 {}^{\circ})+2)}{0.22365 x^2+6.54928 x}+15.4=0,x\right]$

The solution for $x$ are as follows: $$\{{x \rightarrow -25.917}, {x \rightarrow -7.84482 - 4.55704 i}, {x \rightarrow -7.84482 + 4.55704 i}, {x \rightarrow 3.70686 - 3.22406 i}, {x \rightarrow 3.70686 + 3.22406 i}\}$$