Problem. Prove the following inequality for non-negative real numbers $a,b,c$: If $a+b+c=3$ then: $$(a+b^2)(b+c^2)(c+a^2)\le13+abc(1-2abc)\qquad(1)$$
There are two more variants of the same problem. The next one seems to be the strongest:
$$(a+b^2)(b+c^2)(c+a^2)\le13\qquad(2)$$
...and the third one follows immediately from the second:
$$(a+b^2)(b+c^2)(c+a^2)\le13+abc\qquad(3)$$
I have tried to tackle the first problem in the following way:
$$abc(1+\frac{b^2}{a})(1+\frac{c^2}{b})(1+\frac{a^2}{c})\le13+abc(1-2abc)$$
With the following replacement:
$$u=\frac{b^2}{a}, v=\frac{c^2}{b}, w=\frac{a^2}{c}, uvw=abc$$
...the inequality becomes:
$$(1+u)(1+v)(1+w)\le \frac{13}{uvw}+1-2uvw$$
Also note that $uvw=abc\le\left( \frac{a+b+c}{3}\right)^3=1$
And now what?
We'll prove the following stronger inequality.
Let $a$, $b$ and $c$ be non-negative numbers such that $a+b+c=3$. Prove that: $$(a+b^2)(b+c^2)(c+a^2)\le13+abc(1-6abc).$$ Indeed, we need to prove that $$\frac{13(a+b+c)^6}{729}+\frac{abc(a+b+c)^3}{27}-6a^2b^2c^2\geq$$ $$\geq\frac{(a(a+b+c)+3b^2)(b(a+b+c)+3c^2)(c(a+b+c)+3a^2)}{27}.$$ Now, let $a=\min\{a,b,c\}$, $b=a+u$ and $c=a+v$.
Hence, $$13(a+b+c)^6+27abc(a+b+c)^3-4374a^2b^2c^2-$$ $$-27(a(a+b+c)+3b^2)(b(a+b+c)+3c^2)(c(a+b+c)+3a^2)=$$ $$=2187(u^2-uv+v^2)a^4+54(52u^3+3uv^2+3uv^2+52v^3)a^3+$$ $$+27(29u^4+98u^3v-51u^2v^2+98uv^3+29v^4)a^2+$$ $$+9(17u^5+31u^4v+62u^3v^2+8u^2v^3+58uv^4+17v^5)a+$$ $$+13u^6-3u^5v+33u^4v^2-64u^3v^3-48u^2v^4+78uv^5+13v^6\geq0.$$