Since $\ln a\leq a-1,$ I tried to use that inequality to calculate a maximum value for $$\prod_{cyc}\frac{9y+4z-6x}{x}$$ where $x,y,z>0$. Or $$\sum_{cyc}\log\frac{9y+4z-6x}{x}$$ Then $$\log\frac{9y+4z-6x}{x}\leq\frac{9y+4z-7x}{x}$$ but it seems not to go further.
2026-02-22 21:36:26.1771796186
Seeking the Maximum of a Product expression using Inequalities
91 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in INEQUALITY
- Confirmation of Proof: $\forall n \in \mathbb{N}, \ \pi (n) \geqslant \frac{\log n}{2\log 2}$
- Prove or disprove the following inequality
- Proving that: $||x|^{s/2}-|y|^{s/2}|\le 2|x-y|^{s/2}$
- Show that $x\longmapsto \int_{\mathbb R^n}\frac{f(y)}{|x-y|^{n-\alpha }}dy$ is integrable.
- Solution to a hard inequality
- Is every finite descending sequence in [0,1] in convex hull of certain points?
- Bound for difference between arithmetic and geometric mean
- multiplying the integrands in an inequality of integrals with same limits
- How to prove that $\pi^{e^{\pi^e}}<e^{\pi^{e^{\pi}}}$
- Proving a small inequality
Related Questions in OPTIMIZATION
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- optimization with strict inequality of variables
- Gradient of Cost Function To Find Matrix Factorization
- Calculation of distance of a point from a curve
- Find all local maxima and minima of $x^2+y^2$ subject to the constraint $x^2+2y=6$. Does $x^2+y^2$ have a global max/min on the same constraint?
- What does it mean to dualize a constraint in the context of Lagrangian relaxation?
- Modified conjugate gradient method to minimise quadratic functional restricted to positive solutions
- Building the model for a Linear Programming Problem
- Maximize the function
- Transform LMI problem into different SDP form
Related Questions in MAXIMA-MINIMA
- optimization with strict inequality of variables
- Minimum value of a complex expression involving cube root of a unity
- Calculation of distance of a point from a curve
- Find all local maxima and minima of $x^2+y^2$ subject to the constraint $x^2+2y=6$. Does $x^2+y^2$ have a global max/min on the same constraint?
- Solving discrete recursion equations with min in the equation
- Trouble finding local extrema of a two variable function
- Why do I need boundedness for a a closed subset of $\mathbb{R}$ to have a maximum?
- Find the extreme points of the function $g(x):=(x^4-2x^2+2)^{1/2}, x∈[-0.5,2]$
- Maximizing triangle area problem
- Find the maximum volume of a cylinder
Related Questions in PRODUCTS
- Product of sums of all subsets mod $k$?
- Simplify $\prod_{k=1}^{l} \sum_{r=d}^m {{m}\choose{r}} \left(N-k \right)^{r} k^{m-r+1}$
- Can we give a categorical definition of product without using any sub/superscripts or cheating?
- Is there an "inverted" dot product?
- About constant product
- Finding a closed form for a simple product
- For what value(s) of $a$ does the inequality $\prod_{i=0}^{a}(n-i) \geq a^{a+1}$ hold?
- Is there something like coproduct categories
- Limit of Product of iid Random Variables
- Approximating $\frac{\frac{N}{2}!\frac{N}{2}!}{(\frac{N}{2}-m)!(\frac{N}{2}+m)!}$ without using logs
Related Questions in BUFFALO-WAY
- Prove that $(x-y)(y-z)(z-x) \leq \frac{1}{\sqrt{2}}$
- Proving $a^4+b^4+c^4+(\sqrt {3}-1)(a^2 b c+a b^2 c+a b c^2 )\ge \sqrt {3} (a^3 b+b^3 c+c^3 a)$ for real $a$, $b$, $c$
- prove this inequality by $abc=1$
- Prove $(a+b^2)(b+c^2)(c+a^2)\le13+abc(1-2abc)$ for $a + b + c = 3$
- Seeking the Maximum of a Product expression using Inequalities
- If $0⩽x⩽y⩽z⩽w⩽u$ and $x+y+z+w+u=1$, prove $xw+wz+zy+yu+ux⩽\frac15$
- Inequality from AMM problems section
- Proving $\sum\limits_{\text{cyc}} \frac{a}{b^2+c^2+d^2} \geq \frac{3\sqrt{3}}{2}\frac{1}{\sqrt{a^2+b^2+c^2+d^2}}$ for $a, b, c, d >0$
- Inequality $\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+15\sqrt[3]{abc}\geq 6(a+b+c).$
- show this inequality with $\sum_{i=1}^{n}a_{i}=n$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
For $x=y=z$ we get a value $343$.
We'll prove that it's a maximal value.
Indeed, we need to prove that $$\prod_{cyc}\frac{9y+4z-6x}{x}\leq343$$ or $$\sum_{cyc}(36x^3-92x^2y+33x^2z+23xyz)\geq0.$$ Now, let $x=\min\{x,y,z\}$, $y=x+u$ and $z=x+v$.
Thus, we need to prove that $$49(u^2-uv+v^2)x+(9u+4v)(2u-3v)^2\geq0,$$ which is obvious.
Done!