Use the equation $\frac{(1-x^2)^n}{(1-x)^n} = (1+x)^n$ to prove the following identity:
$\displaystyle \sum_{k=0}^\frac{m}{2}(-1)^k{n\choose k}{n+m-2k-1\choose n-1}={m\choose n}$, $m\leqslant n$ and $m$ even
I am really at a loss for how to do this. Where did the $m$ and condition $m$ even come from?
The coefficient of $x^{m-2k}$ in $\displaystyle \frac{1}{(1-x)^n}$ is $\displaystyle \binom{n+m-2k-1}{n-1}$ and the coefficient of $x^{2k}$ in the binomial expansion of $(1-x^2)^n$ is $\displaystyle (-1)^{k}\binom{n}{k}$.
Together that gives you the coefficient of $x^m$ in the expansion of: $$(1-x^2)^n \times \frac{1}{(1-x)^n} = \sum\limits_{m=0}^{\infty} \left(\sum\limits_{k=0}^{[m/2]}(-1)^{k}\binom{n}{k}\binom{n+m-2k-1}{n-1}\right)x^m$$
On the other hand the coefficient of $x^m$ in $(1+x)^n$ is simply $\displaystyle \binom{n}{m}$.