I'm computing a class of harmonic sums. Denote
- $H(n)=\sum_1^n \frac{1}{k}, \widetilde H(n)=\sum_1^n \frac{(-1)^{k-1}}{k}$
Harmonic numbers, then how to prove
- $\small\sum _{n=1}^{\infty } \frac{(-1)^{n-1} \widetilde H(n)^2 H(n)}{2 n+1}=\frac{\pi ^2 C}{12}-40 \Im(\text{Li}_4(1+i))+\frac{11}{12} \pi \log ^3(2)+\frac{11}{16} \pi ^3 \log (2)+\frac{5 \psi ^{(3)}\left(\frac{1}{4}\right)}{256}-\frac{5 \psi ^{(3)}\left(\frac{3}{4}\right)}{256}$
- $\small \sum _{n=1}^{\infty } \frac{(-1)^{n-1}\widetilde H(n) H(n)^2}{2 n+1}=\frac{\pi ^2 C}{6}+64 \Im(\text{Li}_4(1+i))-\frac{1}{3} 5 \pi \log ^3(2)-\frac{9}{8} \pi ^3 \log (2)-\frac{\psi ^{(3)}\left(\frac{1}{4}\right)}{32}+\frac{\psi ^{(3)}\left(\frac{3}{4}\right)}{32}$
- $\small \sum _{n=1}^{\infty } \frac{(-1)^{n-1} \widetilde H(n)^3}{2 n+1}=\frac{\pi ^2 C}{6}+24 \Im(\text{Li}_4(1+i))-\frac{1}{2} \pi \log ^3(2)-\frac{3}{8} \pi ^3 \log (2)-\frac{5 \psi ^{(3)}\left(\frac{1}{4}\right)}{384}+\frac{5 \psi ^{(3)}\left(\frac{3}{4}\right)}{384}$
I'd like you to help me establish any of the 3 identities. Any help will be appreciated!
Appendix: To 'guess' the closed-form, use
S = {Pi^3 Log[2], Pi Log[2]^3, Pi^2*Catalan, Catalan*Log[2]^2,
Pi*Zeta[3], Log[2] Im[PolyLog[3, 1 + I]], Im[PolyLog[4, 1 + I]],
PolyGamma[3, 1/4] - PolyGamma[3, 3/4]};
S0 = {0, Pi^3 Log[2], Pi Log[2]^3, Pi^2*Catalan, Catalan*Log[2]^2,
Pi*Zeta[3], Log[2] Im[PolyLog[3, 1 + I]], Im[PolyLog[4, 1 + I]],
PolyGamma[3, 1/4] - PolyGamma[3, 3/4]};
TS = FindIntegerNullVector[
N[{'Numeric value of the sum',
Pi^3 Log[2], Pi Log[2]^3, Pi^2*Catalan, Catalan*Log[2]^2,
Pi*Zeta[3], Log[2] Im[PolyLog[3, 1 + I]], Im[PolyLog[4, 1 + I]],
PolyGamma[3, 1/4] - PolyGamma[3, 3/4]}, 50]];
Expand[TS.S0/(-TS[[1]])]
Update: See arXiv $2007.03957$ for @pisco's solution on these series, evaluating a large class of polylog integrals including the one @Dr. Wolfgang Hintze's offered.
Answering part of the question of @Ali Shather in a comment I have derived an integral representation for the second sum.
Result
We write
$$s_2 = \sum _{n=1}^{\infty } \frac{(-1)^{n-1}\widetilde H(n) H(n)^2}{2 n+1} = \int_0^1 i_2(u) \,du\tag{1}$$
with the integrand
$$i_2(u) = \sum _{n=1}^{\infty }(-1)^{n-1}u^{2 n}\widetilde H(n) H(n)^2\tag{2}$$
Notice that the denominator $2n+1$ is generated by the integration over $u$.
I have calculated the sum in $(2)$ with a the following result which is composed of $\text{Li}_3$, $\text{Li}_2$, $\zeta(3)$ and $\log$s,
$$i_{2}(u)= -\frac{1}{24 \left(u^2+1\right)}\left(-24 \text{Li}_3\left(1-u^2\right)+6 \text{Li}_3\left(\left(\frac{1-u^2}{u^2+1}\right)^2\right)-24 \text{Li}_3\left(\frac{1}{u^2+1}\right)+24 \text{Li}_3\left(\frac{u^2}{u^2+1}\right)-24 \text{Li}_3\left(\frac{2 u^2}{u^2+1}\right)+24 \text{Li}_3\left(\frac{1}{2} \left(u^2+1\right)\right)+24 \log (2) \text{Li}_2\left(1-u^2\right)+24 \text{Li}_2\left(\frac{1}{u^2+1}\right) \log \left(\frac{2}{u^2}+2\right)-24 \text{Li}_2\left(\frac{u^2}{u^2+1}\right) \log \left(\frac{u^2}{u^2+1}\right)+24 \text{Li}_2\left(\frac{2 u^2}{u^2+1}\right) \log \left(\frac{2 u^2}{u^2+1}\right)-24 \text{Li}_2\left(\frac{1-u^2}{u^2+1}\right) \log \left(\frac{1}{u^2}-u^2\right)-24 \text{Li}_2\left(-\frac{1-u^2}{u^2+1}\right) \log \left(\frac{1-u^2}{u^2+1}\right)+24 \text{Li}_2\left(\frac{1}{2} \left(u^2+1\right)\right) \log \left(\frac{2}{u^2+1}\right)+8 \log ^3\left(u^2+1\right)+60 \log (2) \log ^2\left(u^2+1\right)+8 \log ^2(2) \left(\log (2)-3 \log \left(u^2+1\right)\right)+8 \log \left(1-u^2\right) \left(-6 \left(\log \left(1-u^2\right)+2 \log \left(\frac{1}{2} \left(u^2+1\right)\right)\right) \log (u)+\log \left(1-u^2\right) \left(\log \left(\frac{1}{8} \left(1-u^2\right)\right)+3 \log \left(u^2+1\right)\right)+12 \log ^2(u)\right)-96 \log (2) \log (u) \log \left(u^2+1\right)-4 \pi ^2 \log \left(\frac{4}{1-u^2}\right)+21 \zeta (3)\right)\tag{3}$$
The corresponding Mathematica expression is provided in the appendix.
For a first check, the numeric evaluation of the integral gives with WorkingPrecision 30:
$$N(s_2) \simeq 0.9497576952344695293296230|77234\tag{4}$$
@metamorphory claimed to have calculated many more digits
$$0.9497576952344695293296230|8973659924...\tag{5}$$
Before the $"|"$ both values conincide. I take this as a strong ndication that my expression for $s_2$ is correct.
Derivation
In order to calculate the sum in $(2)$ we have several choices for the harmonic numbers involved. I found it useful to leave one factor $H_n$ as is and replace the other two be their integral representations
$$H_n \to \int_0^1 \frac{1-x^n}{1-x}\tag{6a}$$
$$\widetilde H(n) \to \int_0^1 \frac{1-(-y)^n}{1+y}\tag{6b}$$
The sum in $(5)$ can then be done resulting in the following double integral for the integrand
$$i(u) = \int_{[0,1]^2} \left(\frac{\log \left(u^2+1\right)}{\left(u^2+1\right) (x+1) (1-y)}+\frac{\log \left(1-u^2 x\right)}{(x+1) (1-y) \left(u^2 x-1\right)}-\frac{\log \left(u^2 y+1\right)}{(x+1) (1-y) \left(u^2 y+1\right)}-\frac{\log \left(1-u^2 x y\right)}{(x+1) (1-y) \left(u^2 x y-1\right)}\right)\,dx\,dy\tag{7}$$
It turned out that it is convernient to take the $y$-integral first, for which Mathematica gives luckily directly (without the intermedaiate step of finding an antidrivative) this expression
$$i_y(u,x)=\frac{1}{6 \left(u^2+1\right) (x+1) \left(u^2 x-1\right)}\left(\text{Li}_2\left(\frac{1}{u^2+1}\right) \left(6-6 u^2 x\right)+6 \left(u^2+1\right) \text{Li}_2\left(1-u^2 x\right)+\pi ^2 \left(u^2 (x-1)-2\right)+\left(9-9 u^2 x\right) \log ^2\left(u^2+1\right)+12 \left(u^2 x-1\right) \log (u) \log \left(u^2+1\right)+6 \left(u^2+1\right) \log \left(\frac{u^2 x}{1-u^2 x}\right) \log \left(1-u^2 x\right)\right)$$
For the final $x$-integral Mathematica (again directly) gives a long expression containing several complex terms, some explicit (factor i in front), others implicit (polylogs and logs with arguments outside the range leading to real expressions).
A careful analysis guided by the aim to make all terms real quatities using transformation formulas of polylogs leads to a lot of cancellations of complex terms and in the end leaves for the complex part of $i(u)$ this expression with a factor $i$ in front
$$z=-12 \text{Li}_2\left(\frac{1}{u^2+1}\right)+12 \text{Li}_2\left(\frac{1-u^2}{u^2+1}\right)-12 \text{Li}_2\left(\frac{u^2-1}{u^2+1}\right)+12 \text{Li}_2\left(1-\frac{1}{u^2}\right)-6 \log ^2\left(u^2+1\right)+24 \log (u) \log \left(\frac{u^2}{u^2+1}\right)+24 \log (u) \log \left(u^2+1\right)-24 \log ^2(u)+\pi ^2-12 \log ^2(2)+\log (4096) \log (2)$$
This, however, is numerically zero, and it is also simplified to exactly zero.
The rest of $i$ is the expression $i_2$ given in $(2)$ which contains only real terms.
This ends the derivation.
Discussion
Trying the final $u$-integration we encounter several non-trivial integrals.
One of the simpler ones is
$$\int_0^1 \frac{\log (u) \log (1-u)}{u^2+1} \, du=-\Im\left(\text{Li}_3\left(\frac{1}{2}-\frac{i}{2}\right)\right)-\frac{\pi ^3}{128}-\frac{1}{32} \pi \log ^2(2)$$
To do the $u$-integral completely and hereby confirm the closed form provided in the OP seems to require a huge amount of calculations.
Maybe the integrand can be significantly simplified which might facilitate the integration.
Facing the difficulties it is gratifying that the closed form was found by @Edit profile and settings using experimental mathematics and based on the high precision numerics provided by @metamorphy.
Appendix
The Mathematica expression of the integrand is