My question is:
Can a closed-form expression for the following alternating quadratic Euler sum be found? Here $H_n$ denotes the $n$th harmonic number $\sum_{k = 1}^n 1/k$. $$S = \sum_{n = 1}^\infty \frac{(-1)^n H_n H_{2n}}{n^2}$$
What I have managed to do so far is to convert $S$ to two rather difficult integrals as follows.
Starting with the result $$\frac{H_{2n}}{2n} = -\int_0^1 x^{2n - 1} \ln (1 - x) \, dx \tag1$$ Multiplying (1) by $(-1)^n H_n/n$ then summing the result from $n = 1$ to $\infty$ gives $$S = -2 \int_0^1 \frac{\ln (1 - x)}{x} \sum_{n = 1}^\infty \frac{(-1)^n H_n}{n} x^{2n}. \tag2$$ From the following generating function for the harmonic numbers $$\sum_{n = 1}^\infty \frac{H_n x^n}{n} = \frac{1}{2} \ln^2 (1 - x) + \operatorname{Li}_2 (x),$$ replacing $x$ with $-x^2$ leads to $$\sum_{n = 1}^\infty \frac{(-1)^n H_n}{n} x^{2n} = \frac{1}{2} \ln^2 (1 + x^2) + \operatorname{Li}_2 (-x^2).$$ Substituting this result into (2) yields $$S = -2 \int_0^1 \frac{\ln (1 - x) \operatorname{Li}_2 (-x^2)}{x} \, dx - \int_0^1 \frac{\ln (1 - x) \ln^2 (1 + x^2)}{x} \, dx,$$ or, after integrating the first of the integrals by parts twice $$S = -\frac{5}{2} \zeta (4) + 4 \zeta (3) \ln 2 - 8 \int_0^1 \frac{x \operatorname{Li}_3 (x)}{1 + x^2} \, dx - \int_0^1 \frac{\ln (1 - x) \ln^2 (1 + x^2)}{x} \, dx. \tag3$$
I have a slim hope the first of these integrals can be found (I cannot find it). As for the second of the integrals, it is proving to be a little difficult.
Can someone find each of the integrals appearing in (3)? Or perhaps an alternative approach to the sum will deliver the closed-form I seek, I am fine either way.
Update
Thanks to Ali Shather, the first of the integrals can be found. Here \begin{align} \int_0^1 \frac{\ln (1 - x) \operatorname{Li}_2 (-x^2)}{x} \ dx &=\sum_{n=1}^\infty\frac{(-1)^n}{n^2}\int_0^1 x^{2n-1}\ln(1-x)\ dx\\ &= -\sum_{n=1}^\infty\frac{(-1)^nH_{2n}}{2n^3}\\ &=-4\sum_{n=1}^\infty\frac{(-1)^nH_{2n}}{(2n)^3}\\ &=-4 \operatorname{Re} \sum_{n=1}^\infty i^n\frac{H_n}{n^3}. \end{align} And using the result I calculated here, namely $$\operatorname{Re} \sum_{n=1}^\infty i^n\frac{H_n}{n^3} = \frac{5}{8} \operatorname{Li}_4 \left (\frac{1}{2} \right ) - \frac{195}{256} \zeta (4) + \frac{5}{192} \ln^4 2 - \frac{5}{32} \zeta (2) \ln^2 2 + \frac{35}{64} \zeta (3) \ln 2,$$ gives \begin{align} \int_0^1 \frac{\ln (1 - x) \operatorname{Li}_2 (-x^2)}{x} \, dx &= -\frac{5}{2} \operatorname{Li}_4 \left (\frac{1}{2} \right ) + \frac{195}{64} \zeta (4) - \frac{5}{48} \ln^4 2\\ & \qquad + \frac{5}{8} \zeta (2) \ln^2 2 - \frac{35}{16} \zeta (3) \ln 2. \end{align}
Using your integral representation, the sum equals to: $$\sum_{n = 1}^\infty \frac{(-1)^n H_n H_{2n}}{n^2}= -2 \int_0^1 \frac{\ln (1 - x) \operatorname{Li}_2 (-x^2)}{x} \, dx - \int_0^1 \frac{\ln (1 - x) \ln^2 (1 + x^2)}{x} \, dx$$ $$\small=-2 C^2+2 \pi C \log (2)-4 \pi \Im(\text{Li}_3(1+i))+3 \text{Li}_4\left(\frac{1}{2}\right)+\frac{21}{8} \zeta (3) \log (2)+\frac{487 \pi ^4}{5760}+\frac{\log ^4(2)}{8}+\frac{1}{8} \pi ^2 \log ^2(2)$$ For the second integral and its derivation, see here.