Let $a$ be an arithmetic sequence: $$a_i=a_1+\lambda(i-1),\tag1$$ and consider a $n\times n$ circulant matrix $M_{n}(a)$ "built" on rotational shifts of the sequence $a$, i.e. with elements:
$$M_{ij}=a_{1+(j−i)\operatorname{mod}n}.\tag2$$
Prove: $$ \det M_n(a)=\frac{a_1+a_n}2(-n\lambda)^{(n-1)}.\tag3 $$
An example: $$ \det\begin{pmatrix} 1&2&3&4&5\\ 5&1&2&3&4\\ 4&5&1&2&3\\ 3&4&5&1&2\\ 2&3&4&5&1\\ \end{pmatrix}=\frac{1+5}2(-5)^4=1875 $$
Write $a$ for $a_0$ and $\newcommand{\ze}{\zeta}\ze$ for $\exp(2\pi i/n)$. The determinant is $$\newcommand{\la}{\lambda}D=\prod_{r=0}^{n-1}\sum_{k=0}^{n-1}\ze^{jk}(a+k\la)$$ by the usual formula. The $r=0$ summand is $$\sum_{k=0}^{n-1}(a+k\la)=na+\frac{n(n-1)}2\la.$$ The summand for $0<r\le n-1$ is $$\sum_{k=0}^{n-1}\ze^{rk}(a+k\la)=\la\sum_{k=0}^{n-1}k\ze^{rk}.$$ This is an arithmetic-geometric progression: $$(1-\ze^r)^2\sum_{k=0}^{n-1}k\ze^{rk}=\ze^r-n\ze^{rn}+(n-1)\ze^{r(n+1)} =-n(1-\ze^r).$$ Then $$\sum_{k=0}^{n-1}\ze^{rk}(a+k\la)=-\frac{n\la}{1-\ze^r}$$ and so $$\prod_{r=1}^{n-1} \sum_{k=0}^{n-1}\ze^{rk}(a+k\la)=(-n\la)^{n-1}\prod_{r=1}^n \frac1{1-\ze^r}=\frac{(-n\la)^{n-1}}{n}.$$ If you multiply this by the $r=0$ summand, you should get your formula.