What is the expansion of $\sqrt{1+ux+vx^2}$ in powers of $x$?
This came up in my answer here: How to solve this recurrence$f(n)=A\cdot f(n-1)+B\sum{f(i)f(n-i)},\;1\leq i\leq n-1,$ and $f(1)=K$?
I just did a straightforward expansion and wondered if there is a better way to do it.
Here is my work:
Since $\sqrt{1+y} =\sum_{k=0}^{\infty} \dfrac{(-1)^{k+1}}{4^k(2k-1)}\binom{2k}{k}y^k $,
Then
$\begin{array}\\ \sqrt{1+ux+vx^2} &=\sum_{k=0}^{\infty} \dfrac{(-1)^{k+1}}{4^k(2k-1)}\binom{2k}{k}(ux+vx^2)^k\\ &=\sum_{k=0}^{\infty} \dfrac{(-1)^{k+1}}{4^k(2k-1)}\binom{2k}{k}x^k(u+vx)^k\\ &=\sum_{k=0}^{\infty} \dfrac{(-1)^{k+1}}{4^k(2k-1)}\binom{2k}{k}x^k\sum_{j=0}^k \binom{k}{j}v^jx^ju^{k-j}\\ &=\sum_{k=0}^{\infty} \sum_{j=0}^k\dfrac{(-1)^{k+1}}{4^k(2k-1)}\binom{2k}{k}x^{k+j} \binom{k}{j}v^ju^{k-j}\\ &=\sum_{n=0}^{\infty} x^n\sum_{j=0}^n\dfrac{(-1)^{n-j+1}}{4^{n-j}(2(n-j)-1)}\binom{2(n-j)}{n-j} \binom{n-j}{j}v^ju^{n-2j} \qquad(k = n-j)\\ \end{array} $
We can play with $\binom{2(n-j)}{n-j} \binom{n-j}{j} =\dfrac{(2n-2j)!(n-j)!}{(n-j)!^2j!(n-2j)!} =\dfrac{(2n-2j)!}{(n-j)!j!(n-2j)!} $ but I don't see anything beyond this.
Also, any corrections appreciated.