If $I \subset K[x_1,\dots,x_n]$ is a zero dimensional ideal and $$V(I) = \{ (\alpha_1,\dots,\alpha_n) \in K^n: f((\alpha_1,\dots,\alpha_n)) = 0\ \forall f\in I\}$$ (the variety). Then if $G$ is a Groebner Basis for $I$ w.r.t. some monomial order $>$, then $\forall i$ $\exists g_i \in G$ such that $LT(g_i) = x_i^{d_i}$ for some $d_i > 0$. Why is $|V(I)| \leq d_1\cdots d_n$?
2025-01-13 02:22:06.1736734926
Why is $|V(I)| \leq d_1\cdots d_n$?
65 Views Asked by jacob smith https://math.techqa.club/user/jacob-smith/detail At
1
There are 1 best solutions below
Related Questions in ALGEBRAIC-GEOMETRY
- Relations among these polynomials
- Completion of a flat morphism
- Is every sheaf a subsheaf of a flasque sheaf?
- Intersection of curves on surfaces and the sheaf $\mathcal O_{C\cap C'}$
- Does intersection of smooth divisors satisfy Serre $S_2$ criterion?
- Application of GRR in number theory
- Generic point and pull back
- Every point lies on a unique secant through $C$
- Projective transformation in $\mathbb{P}^1$
- Equality $H^i(K,\mathcal{F}_{|K})=\varinjlim_{U\supset K}H^i(U,\mathcal{F}_{|U})$ for a constructible sheaf
Related Questions in RING-THEORY
- $x=(0,\overline{1})$ and $y=(0,\overline{2})$ generate the same ideal in $R=\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z}$
- Show that the quotient ring $R/\mathcal{I}$ is a field.
- Prime ideals $\mathfrak{p} \supset \mathfrak{a}$ are finite in one-dimensional Noetherian domain
- Constructing finite fields of order $8$ and $27$ or any non-prime
- How do I show that the unit group of $\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z}$ is a cyclic group of order 10?
- What is a cubic ideal/partial cubic ideal?
- Surjective ring homomorphism from polynomial to complex numbers
- Generalization of nilpotency in ring theory?
- Give an example of an injective ring homomorphism $f : R \to S$ where $R$ is commutative, but $S$ is not commutative
- Is the ring of formal power series in infinitely many variables a unique factorization domain?
Related Questions in COMMUTATIVE-ALGEBRA
- Relations among these polynomials
- Completion of a flat morphism
- Explain the explanation of the Rabinowitsch trick
- Does intersection of smooth divisors satisfy Serre $S_2$ criterion?
- Prime ideals $\mathfrak{p} \supset \mathfrak{a}$ are finite in one-dimensional Noetherian domain
- If module $M = N + mM$, then why is $m(M/N) = M/N$?
- Isomorphism of Localization of $A_\mathfrak{p}$ and $A_\mathfrak{q}$
- Question on an exercise in Atiyah-Macdonald.
- Tensor product of two fields
- Why the ideal of the union of coordinate axes in $\mathbb A^3$ can not be generated by two elements, i.e., is not a complete intersection?
Related Questions in IDEALS
- Property of the norm of an ideal
- $x=(0,\overline{1})$ and $y=(0,\overline{2})$ generate the same ideal in $R=\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z}$
- Prime ideals $\mathfrak{p} \supset \mathfrak{a}$ are finite in one-dimensional Noetherian domain
- What is a cubic ideal/partial cubic ideal?
- A principal maximal ideal
- Ideals in Lie algebras
- Ideals of $\mathbb{Z}[i]$ geometrically
- Does reduceness of $K[t_1,\dots,t_n]/I$ imply radicality of $I$?
- Product of ideal generators
- Density of integers that are norms of ideals for $K \ne \mathbb{Q}$
Related Questions in GROEBNER-BASIS
- Groebner Basis Question: Where are the other two zeros hiding?
- Basis for row space of A
- Groebner basis and syzygy
- Polynomial constraint which ensures that a variable can never be zero?
- A short question on how the following statement is induced: Groebner Basis Lemma
- A variation of Buchberger algorithm
- Explanation of the Groebner Basis of a pair of polynomials?
- The fastest Gröbner basis algorithm available?
- How to show Buchbergers algorithm terminates in noncommutative cases
- Why is $|V(I)| \leq d_1\cdots d_n$?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
Suppose $x_1>\cdots>x_n$. Then $g_i=g_i(x_i,\dots,x_n)$ is a polynomial in $x_i,\dots,x_n$ for $i=1,\dots,n$.
In particular, $g_n$ is a polynomial only in $x_n$. Let $\alpha_n$ be a root of $g_n$. (There are at most $d_n$ roots.) Then consider $g_{n-1}(x_{n-1},\alpha_n)$. This has at most $d_{n-1}$ roots, and let $\alpha_{n-1}$ be one of them. Now consider $g_{n-2}(x_{n-2},\alpha_{n-1},\alpha_n)$, and so on. Finally we get at most $d_1\cdots d_n$ common roots for $G$.