If $I\subseteq J$ are ideals in a polynomial ring of $n$ variables, how do I prove that $I = J$ if $\operatorname{in}_{\lt}(I)=\operatorname{in}_{\lt}(J)$, where $\lt$ is any monomial ordering?
Obviously it suffices to prove that $J \subseteq I$. I'm stuck with how to go forward once I pick an arbitrary element $f \in J$ and have that $\operatorname{in}_{\lt}(f) \in \operatorname{in}_{\lt} (J)=\operatorname{in}_{\lt}(I)$.
Proposition 2.2.6 of the book "Monomial Ideals" by "Herzog-Hibi"
If $I\neq J$ then $f\in J\setminus I$. Let $f'$ be the remainder of $f$ with respect to a Grobner basis of $I$. Then $f'\neq 0$, $f'\in J$ and $supp f' \nsubseteq in_<(I) $. So $ in_<f' \in in_<(J)-in_<(I)$