How to prove the equation below in a simple way? $$\min_{\mu}\sum_{i=1}^n|y_i-\mu|=\text{median}\{y_1,\cdots,y_n\}$$
2026-02-22 23:29:53.1771802993
Prove that $\min_{\mu}\sum_{i=1}^n|y_i-\mu|=\text{median}\{y_1,\cdots,y_n\}$
183 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in PROBABILITY
- How to prove $\lim_{n \rightarrow\infty} e^{-n}\sum_{k=0}^{n}\frac{n^k}{k!} = \frac{1}{2}$?
- Is this a commonly known paradox?
- What's $P(A_1\cap A_2\cap A_3\cap A_4) $?
- Prove or disprove the following inequality
- Another application of the Central Limit Theorem
- Given is $2$ dimensional random variable $(X,Y)$ with table. Determine the correlation between $X$ and $Y$
- A random point $(a,b)$ is uniformly distributed in a unit square $K=[(u,v):0<u<1,0<v<1]$
- proving Kochen-Stone lemma...
- Solution Check. (Probability)
- Interpreting stationary distribution $P_{\infty}(X,V)$ of a random process
Related Questions in STATISTICS
- Given is $2$ dimensional random variable $(X,Y)$ with table. Determine the correlation between $X$ and $Y$
- Statistics based on empirical distribution
- Given $U,V \sim R(0,1)$. Determine covariance between $X = UV$ and $V$
- Fisher information of sufficient statistic
- Solving Equation with Euler's Number
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- Determine the marginal distributions of $(T_1, T_2)$
- KL divergence between two multivariate Bernoulli distribution
- Given random variables $(T_1,T_2)$. Show that $T_1$ and $T_2$ are independent and exponentially distributed if..
- Probability of tossing marbles,covariance
Related Questions in DISCRETE-MATHEMATICS
- What is (mathematically) minimal computer architecture to run any software
- What's $P(A_1\cap A_2\cap A_3\cap A_4) $?
- The function $f(x)=$ ${b^mx^m}\over(1-bx)^{m+1}$ is a generating function of the sequence $\{a_n\}$. Find the coefficient of $x^n$
- Given is $2$ dimensional random variable $(X,Y)$ with table. Determine the correlation between $X$ and $Y$
- Given a function, prove that it's injective
- Surjective function proof
- How to find image of a function
- Find the truth value of... empty set?
- Solving discrete recursion equations with min in the equation
- Determine the marginal distributions of $(T_1, T_2)$
Related Questions in ECONOMICS
- Total savings from monthly deposits
- Calculus problem from a book of economics.
- a risk lover agent behave as if risk natural.
- Changes in the mean absolute difference (relating to the Gini coefficient)
- Absurd differential in first order condition
- FM Actuary question, comparing interest rate and Discount rate
- How do I solve for the selling price?
- Stochastic Dynamic Programming: Deriving the Steady-State for a Lottery
- A loan is to be repaid quarterly for five years that will start at the end of two years. If interest rate is $6$%..
- A cash loan is to be repaid by paying $13500$ quarterly for three years starting at the end of four years. If the interest rate is $12$%
Related Questions in QUANTILE
- Explicitly representing a random variable such as $ X(\omega):=\frac{1}{\lambda} \ln \frac{1}{1-\omega}$, which is exponential
- Where can I find examples of Skorokhod representations?
- Asymptotic behaviour of the process $U_n=U_{n-1}+s(U_{n-1})X_n$, where $X_n$ is iid
- Inequality involving quantiles
- Uniform transformation of a quantile
- Implications on the cdf of $\epsilon_1-\epsilon_2$ of conditions on the cdf's of $\epsilon_1, \epsilon_2$
- Pushforward-change-of-variable with quantile function
- Choosing an interval of the CDF to find each quartile
- Prove that $\min_{\mu}\sum_{i=1}^n|y_i-\mu|=\text{median}\{y_1,\cdots,y_n\}$
- How do you solve for the mean in a Normal Distribution?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?