Let $x_{\alpha} = \inf \{x \in\mathbb{R}: F_X(x) \geq \alpha\}$, $U \sim Uniform(0,1)$ and $Z=x_{U}$. I need to prove that Z has the same distribution as X. Obviously this is true as can easily be shown with a numerical example and the intuition behind it is clear. However I cannot seem to formulate a formal mathematical proof. Could anyone provide me with a hint/paper of how to do this?
2026-02-22 23:26:58.1771802818
Uniform transformation of a quantile
514 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in PROBABILITY
- How to prove $\lim_{n \rightarrow\infty} e^{-n}\sum_{k=0}^{n}\frac{n^k}{k!} = \frac{1}{2}$?
- Is this a commonly known paradox?
- What's $P(A_1\cap A_2\cap A_3\cap A_4) $?
- Prove or disprove the following inequality
- Another application of the Central Limit Theorem
- Given is $2$ dimensional random variable $(X,Y)$ with table. Determine the correlation between $X$ and $Y$
- A random point $(a,b)$ is uniformly distributed in a unit square $K=[(u,v):0<u<1,0<v<1]$
- proving Kochen-Stone lemma...
- Solution Check. (Probability)
- Interpreting stationary distribution $P_{\infty}(X,V)$ of a random process
Related Questions in TRANSFORMATION
- $\int \ x\sqrt{1-x^2}\,dx$, by the substitution $x= \cos t$
- Functions on $\mathbb{R}^n$ commuting with orthogonal transformations
- How do you prove that an image preserving barycentric coordinates w.r.t two triangles is an affine transformation?
- Non-logarithmic bijective function from $\mathbb{R}^+$ into $\mathbb{R}$
- Where does this "magical" transformatiom come from?
- Calculate the convolution: $\frac{\sin(4t)}{\pi t}*( \cos(t)+\cos(6t) )$ using Fourier transform
- Find all $x \in\mathbb R^4$ that are mapped into the zero vector by the transformation $x \mapsto Ax$
- Linear transformation $f (ax+by)=$?
- Is a conformal transformation also a general coordinate transformation?
- Infinite dimensional analysis
Related Questions in UNIFORM-DISTRIBUTION
- Uniform distribution: two parts of semicircle
- What is the distribution of the modular inverse of a uniformly random element in $\mathrm{Z}_{n}\setminus\{0\}$
- Determine limits for marginal pdf after Jacobian transformation
- distribution of Z=X+Y
- integrand of norm subjected to translation
- Convergence of ratio of two sums of uniform random variables
- Variance of $T_n = \min_i \{ X_i \} + \max_i \{ X_i \}$
- $X$ and $Y$ has uniform distribution. Find $(X-Y)^2$
- The sequence $\,a_n=\lfloor \mathrm{e}^n\rfloor$ contains infinitely many odd and infinitely many even terms
- Difference between conditional expectation E(Y|X) and E(Y|X=x)
Related Questions in QUANTILE
- Explicitly representing a random variable such as $ X(\omega):=\frac{1}{\lambda} \ln \frac{1}{1-\omega}$, which is exponential
- Where can I find examples of Skorokhod representations?
- Asymptotic behaviour of the process $U_n=U_{n-1}+s(U_{n-1})X_n$, where $X_n$ is iid
- Inequality involving quantiles
- Uniform transformation of a quantile
- Implications on the cdf of $\epsilon_1-\epsilon_2$ of conditions on the cdf's of $\epsilon_1, \epsilon_2$
- Pushforward-change-of-variable with quantile function
- Choosing an interval of the CDF to find each quartile
- Prove that $\min_{\mu}\sum_{i=1}^n|y_i-\mu|=\text{median}\{y_1,\cdots,y_n\}$
- How do you solve for the mean in a Normal Distribution?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Verify that $Z \leq t$ if and only if $U \leq F_X(t)$. You then get $P\{Z\leq t\} =P\{U\leq F_X(t)\}=F_X(t)$ Hints for the first part: it is immediate from definiton that $Z \leq t$ if $U \leq F_X(t)$. Suppse $Z\leq t$ but $U>F_X(t)$. There exists $a>0$ such that $U>F_X(t+a)$. Then $F_X(s) < U$ for all $s \leq t+a$ so $Z \geq t+a$, a contradiction.